A two-cluster microscopic model is applied to study elastic alpha-alpha scattering and resonance structure of $^{8}$Be. The model is an algebraic version of the Resonating Group Method, which makes use complete set of oscillator functions to expand wave function of two-cluster system. Interaction between clusters is determined by well-known semi-realistic nucleon-nucleon potentials of Hasegawa-Nagata, Minnesota and Volkov. Detail analysis of resonance wave functions is carried out in oscillator, coordinate and momentum spaces. Effects of the Pauli principle on wave functions of the $^{8}$Be continuous spectrum states are thoroughly studied.