No Arabic abstract
While spatial dose conformity delivered to a target volume has been pushed to its practical limits with advanced treatment planning and delivery, investigations in novel temporal dose delivery are unfolding new mechanisms. Recent advances in ultra-high dose radiotherapy, abbreviated as FLASH, indicate the potential for reduction in healthy tissue damage while preserving tumor control. FLASH therapy relies on very high dose rate of > 40Gy/sec with sub-second temporal beam modulation, taking a seemingly opposite direction from the conventional paradigm of fractionated therapy. FLASH brings unique challenges to dosimetry, beam control, and verification, as well as complexity of radiobiological effective dose through altered tissue response. In this review, we compare the dosimetric methods capable of operating under high dose rate environments. Due to excellent dose-rate independence, superior spatial (~<1 mm) and temporal (~ns) resolution achievable with Cherenkov and scintillation-based detectors, we show that luminescent detectors have a key role to play in the development of FLASH-RT, as the field rapidly progresses towards clinical adaptation. Additionally, we show that the unique ability of certain luminescence-based methods to provide tumor oxygenation maps in real-time with submillimeter resolution can elucidate the radiobiological mechanisms behind the FLASH effect. In particular, such techniques will be crucial for understanding the role of oxygen in mediating the FLASH effect.
First investigations regarding dosimetric properties of the hybrid, pixelated, photon-counting Dosepix detector in a pulsed photon field (RQR8) for the personal dose equivalent $Hmathrm{_p(10)}$ are presented. The influence quantities such as pulse duration and dose rate were varied, and their responses were compared to the legal limits provided in PTB-A 23.2. The variation of pulse duration at a nearly constant dose rate of 3.7$,$Sv/h shows a flat response around 1.0 from 3.6$,$s down to 2$,$ms. A response close to 1.0 is achieved for dose rates from 0.07$,$mSv/h to 35$,$Sv/h for both pixel sizes. Above this dose rate, the large pixels (220$,mathrm{mu}$m edge length) are below the lower limit. The small pixels (55$,mathrm{mu}$m edge length) stay within limits up to 704$,$Sv/h. The count rate linearity is compared to previous results, confirming the saturating count rate for high dose rates.
Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, we evaluated dosimetric water equivalence of four common plastics, HDPE, PMMA, PET, and POM. Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per 1-cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.
Purpose: A Monte Carlo (MC) beam model and its implementation in a clinical treatment planning system (TPS, Varian Eclipse) are presented for a modified ultra-high dose-rate electron FLASH radiotherapy (eFLASH-RT) LINAC. Methods: The gantry head without scattering foils or targets, representative of the LINAC modifications, was modelled in Geant4. The energy spectrum ({sigma}E) and beam source emittance cone angle ({theta}cone) were varied to match the calculated and Gafchromic film measured central-axis percent depth dose (PDD) and lateral profiles. Its Eclipse configuration was validated with measured profiles of the open field and nominal fields for clinical applicators. eFLASH-RT plans were MC forward calculated in Geant4 for a mouse brain treatment and compared to a conventional (Conv-RT) plan in Eclipse for a human patient with metastatic renal cell carcinoma. Results: The beam model and its Eclipse configuration agreed best with measurements at {sigma}E=0.5 MeV and {theta}cone=3.9+/-0.2 degrees to clinically acceptable accuracy (the absolute average error was within 1.5% for in-water lateral, 3% for in-air lateral, and 2% for PDD). The forward dose calculation showed dose was delivered to the entire mouse brain with adequate conformality. The human patient case demonstrated the planning capability with routine accessories in relatively complex geometry to achieve an acceptable plan (90% of the tumor volume receiving 95% and 90% of the prescribed dose for eFLASH and Conv-RT, respectively). Conclusion: To the best of our knowledge, this is the first functional beam model commissioned in a clinical TPS for eFLASH-RT, enabling planning and evaluation with minimal deviation from Conv-RT workflow. It facilitates the clinical translation as eFLASH-RT and Conv-RT plan quality were comparable for a human patient. The methods can be expanded to model other eFLASH irradiators.
Purpose: To investigate the validity of two Monte Carlo simulation absolute dosimetry approaches in the case of a small field dedicated `D-shaped collimator used for the retinoblastoma treatment with external photon beam radiotherapy. Methods: The Monte Carlo code {sc penelope} is used to simulate the linac, the dedicated collimator and a water phantom. The absolute doses (in Gy per monitor unit) for the field sizes considered are obtained within the approach of Popescu {it et al.} in which the tallied backscattered dose in the monitor chamber is accounted for. The results are compared to experimental data, to those found with a simpler Monte Carlo approximation for the calculation of absolute doses and to those provided by the analytical anisotropic algorithm. Our analysis allows for the study of the simulation tracking parameters. Two sets of parameters have been considered for the simulation of the particle transport in the linac target. Results: The change in the tracking parameters produced non-negligible differences, of about 10% or larger, in the doses estimated in reference conditions. The Monte Carlo results for the absolute doses differ from the experimental ones by 2.6% and 1.7% for the two parameter sets for the collimator geometries analyzed. For the studied fields, the simpler approach produces absolute doses that are statistically compatible with those obtained with the approach of Popescu {it et al.} The analytical anisotropic algorithm underestimates the experimental absolute doses with discrepancies larger than those found for Monte Carlo results. Conclusions: The approach studied can be considered for absolute dosimetry in the case of small, `D-shaped and off-axis radiation fields. However, a detailed description of the radiation transport in the linac target is mandatory for an accurate absolute dosimetry.
The high performance requirements at the European Spallation Source have been driving the technological advances on the neutron detector front. Now more than ever is it important to optimize the design of detectors and instruments, to fully exploit the ESS source brilliance. Most of the simulation tools the neutron scattering community has at their disposal target the instrument optimization until the sample position, with little focus on detectors. The ESS Detector Group has extended the capabilities of existing detector simulation tools to bridge this gap. An extensive software framework has been developed, enabling efficient and collaborative developments of required simulations and analyses -- based on the use of the Geant4 Monte Carlo toolkit, but with extended physics capabilities where relevant (like for Bragg diffraction of thermal neutrons in crystals). Furthermore, the MCPL (Monte Carlo Particle Lists) particle data exchange file format, currently supported for the primary Monte Carlo tools of the community (McStas, Geant4 and MCNP), facilitates the integration of detector simulations with existing simulations of instruments using these software packages. These means offer a powerful set of tools to tailor the detector and instrument design to the instrument application.