Do you want to publish a course? Click here

Opportunities at the interface of network science and metabolic modelling

76   0   0.0 ( 0 )
 Added by Diego Oyarz\\'un
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Metabolism plays a central role in cell physiology because it provides the molecular machinery for growth. At the genome-scale, metabolism is made up of thousands of reactions interacting with one another. Untangling this complexity is key to understand how cells respond to genetic, environmental, or therapeutic perturbations. Here we discuss the roles of two complementary strategies for the analysis of genome-scale metabolic models: Flux Balance Analysis (FBA) and network science. While FBA estimates metabolic flux on the basis of an optimisation principle, network approaches reveal emergent properties of the global metabolic connectivity. We highlight how the integration of both approaches promises to deliver insights on the structure and function of metabolic systems with wide-ranging implications in discovery science, precision medicine and industrial biotechnology.



rate research

Read More

The molecular network in an organism consists of transcription/translation regulation, protein-protein interactions/modifications and a metabolic network, together forming a system that allows the cell to respond sensibly to the multiple signal molecules that exist in its environment. A key part of this overall system of molecular regulation is therefore the interface between the genetic and the metabolic network. A motif that occurs very often at this interface is a negative feedback loop used to regulate the level of the signal molecules. In this work we use mathematical models to investigate the steady state and dynamical behaviour of different negative feedback loops. We show, in particular, that feedback loops where the signal molecule does not cause the dissociation of the transcription factor from the DNA respond faster than loops where the molecule acts by sequestering transcription factors off the DNA. We use three examples, the bet, mer and lac systems in E. coli, to illustrate the behaviour of such feedback loops.
Phenotypic variation is a hallmark of cellular physiology. Metabolic heterogeneity, in particular, underpins single-cell phenomena such as microbial drug tolerance and growth variability. Much research has focussed on transcriptomic and proteomic heterogeneity, yet it remains unclear if such variation permeates to the metabolic state of a cell. Here we propose a stochastic model to show that complex forms of metabolic heterogeneity emerge from fluctuations in enzyme expression and catalysis. The analysis predicts clonal populations to split into two or more metabolically distinct subpopulations. We reveal mechanisms not seen in deterministic models, in which enzymes with unimodal expression distributions lead to metabolites with a bimodal or multimodal distribution across the population. Based on published data, the results suggest that metabolite heterogeneity may be more pervasive than previously thought. Our work casts light on links between gene expression and metabolism, and provides a theory to probe the sources of metabolite heterogeneity.
Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.
We tested the hypothesis that the fetal-placental relationship scales allometrically and identified modifying factors. Among women delivering after 34 weeks but prior to 43 weeks gestation, 24,601 participants in the Collaborative Perinatal Project (CPP) had complete data for placental gross proportion measures, specifically, disk shape, larger and smaller disk diameters and thickness, and umbilical cord length. The allometric metabolic equation was solved for alpha and beta by rewriting PW= alpha(BW)^beta as Log (PW) = Log(alpha) + beta*Log(BW). Mean beta was 0.78+ 0.02 (range 0.66, 0.89), 104% of that predicted by a supply-limited fractal system (0.75). Gestational age, maternal age, maternal BMI, parity, smoking, socioeconomic status, infant sex, and changes in placental proportions each had independent and significant effects on alpha. Conclusions: In the CPP cohort, the placental - birth weight relationship scales to approximately 3/4 power.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا