Do you want to publish a course? Click here

Mechanical Properties of Diamond Schwarzites: From Molecular Dynamics Simulations to 3D Printing

93   0   0.0 ( 0 )
 Added by Levi Felix
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Schwarzites are porous crystalline structures with Gaussian negative curvature. In this work, we investigated the mechanical behavior and energy absorption properties of two carbon-based diamond schwarzites (D688 and D8bal). We carried out fully atomistic molecular dynamics (MD) simulations. The optimized MD atomic models were used to generate macro-scale models for 3D-printing (PolyLactic Acid (PLA) polymer filaments) through Fused Deposition Modelling (FDM). Mechanical properties under uniaxial compression were investigated for both the atomic models and the 3D-printed ones. Mechanical testings were performed on the 3D-printed schwarzites where the deformation mechanisms were found to be similar to those observed in MD simulations. These results are suggestive of a scale-independent mechanical behavior that is dominated by structural topology. The structures exhibit high specific energy absorption and crush force efficiency ~0.8, which suggest that the 3D-printed diamond schwarzites are good candidates as energy-absorbing materials.



rate research

Read More

Triply Periodic Minimal Surfaces (TPMS) possess locally minimized surface area under the constraint of periodic boundary conditions. Different families of surfaces were obtained with different topologies satisfying such conditions. Examples of such families include Primitive (P), Gyroid (G) and Diamond (D) surfaces. From a purely mathematical subject, TPMS have been recently found in materials science as optimal geometries for structural applications. Proposed by Mackay and Terrones in 1991, schwarzites are 3D crystalline porous carbon nanocrystals exhibiting the shape of TPMS. Although their complex topology poses serious limitations on their synthesis with conventional nanoscale fabrication methods, such as Chemical Vapour Deposition (CVD), TPMS can be fabricated by Additive Manufacturing (AM) techniques, such as 3D Printing. In this work, we used an optimized atomic model of a schwarzite structure from the D family (D8bal) to generate a surface mesh that was subsequently used for 3D-printing through Fused Deposition Modelling (FDM). This D schwarzite was 3D-printed with thermoplastic PolyLactic Acid (PLA) polymer filaments. Mechanical properties under uniaxial compression were investigated for both the atomic model and the 3D-printed one. Fully atomistic Molecular Dynamics (MD) simulations were also carried out to investigate the uniaxial compression behavior of the D8bal atomic model. Mechanical testings were performed on the 3D-printed schwarzite where the deformation mechanisms were found to be similar to those observed in MD simulations. These results are suggestive of a scale-independent mechanical behavior that is dominated by structural topology.
Schwarzites are crystalline, 3D porous structures with stable negative curvature formed of sp2-hybridized carbon atoms. These structures present topologies with tunable porous size and shape and unusual mechanical properties. In this work, we have investigated the mechanical behavior under compressive strains and energy absorption of four different Schwarzites, through reactive molecular dynamics simulations, using the ReaxFF force field as available in the LAMMPS code. We considered two Schwarzites families, the so-called Gyroid and Primitive and two structures from each family. Our results also show they exhibit remarkable resilience under mechanical compression. They can be reduced to half of their original size before structural failure (fracture) occurs.
In this work, We combined fully atomistic molecular dynamics and finite elements simulations with mechanical testings to investigate the mechanical behavior of atomic and 3D-printed models of pentadiamond. Pentadiamond is a recently proposed new carbon allotrope, which is composed of a covalent network of pentagonal rings. Our results showed that the stress-strain behavior is almost scale-independent. The stress-strain curves of the 3D-printed structures exhibit three characteristic regions. For low-strain values, this first region presents a non-linear behavior close to zero, followed by a well-defined linear behavior. The second regime is a quasi-plastic one and the third one is densification followed by structural failures (fracture). The Youngs modulus values decrease with the number of pores. The deformation mechanism is bending-dominated and different from the layer-by-layer deformation mechanism observed for other 3D-printed structures. They exhibit good energy absorption capabilities, with some structures even outperforming kevlar. Interestingly, considering the Ashby chart, 3D-printed pentadiamond lies almost on the ideal stretch and bending-dominated lines, making them promising materials for energy absorption applications.
We investigated through fully atomistic molecular dynamics simulations, the mechanical behavior (compressive and tensile) and energy absorption properties of two families (primitive (P688 and P8bal) and gyroid (G688 and G8bal)) of carbon-based schwarzites. Our results show that all schwarzites can be compressed (with almost total elastic recovery) without fracture to more than 50%, one of them can be even remarkably compressed up to 80%. One of the structures (G8bal) presents negative Poissons ratio value (auxetic behavior). The crush force efficiency, the stroke efficiency and the specific energy absorption (SEA) values show that schwarzites can be effective energy absorber materials. Although the same level of deformation without fracture observed in the compressive case is not observed for the tensile case, it is still very high (30-40%). The fracture dynamics show extensive structural reconstructions with the formation of linear atomic chains (LACs).
129 - L. Persano 2018
3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا