Do you want to publish a course? Click here

Schwarzschild-Tangherlini Metric from Scattering Amplitudes

120   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a general framework with which the Schwarzschild-Tangherlini metric of a point particle in arbitrary dimensions can be derived from a scattering amplitude to all orders in the gravitational constant, $G_N$, in covariant gauge (i.e. $R_xi$-gauge) with a generalized de Donder-type gauge function, $G_sigma$. The metric is independent of the covariant gauge parameter $xi$ and obeys the classical gauge condition $G_sigma=0$. We compute the metric with the generalized gauge choice explicitly to second order in $G_N$ where gravitational self-interactions become important and these results verify the general framework to one-loop order. Interestingly, after generalizing to arbitrary dimension, a logarithmic dependence on the radial coordinate appears in space-time dimension $D=5$.



rate research

Read More

We present the analytic form of the two-loop four-graviton scattering amplitudes in Einstein gravity. To remove ultraviolet divergences we include counterterms quadratic and cubic in the Riemann curvature tensor. The two-loop numerical unitarity approach is used to deal with the challenging momentum dependence of the interactions. We exploit the algebraic properties of the integrand of the amplitude in order to map it to a minimal basis of Feynman integrals. Analytic expressions are obtained from numerical evaluations of the amplitude. Finally, we show that four-graviton scattering observables depend on fewer couplings than naively expected.
Amplitude methods have proven to be a promising technique to perform Post-Minkowskian calculations used as inputs to construct gravitational waveforms. In this paper, we show how these methods can be extended beyond the standard calculations in General Relativity with a minimal coupling to matter. As proof of principle, we consider spinless particles conformally coupled to a gravitational helicity-0 mode. We clarify the subtleties in the matching procedure that lead to the potential for conformally coupled matter. We show that in the probe particle limit, we can reproduce well known results for the field profile. With the scattering amplitudes at hand, we compute the conservative potential and scattering angle for the binary system. We find that the result is a non trivial expansion that involves not only the coupling strengths, but also a non trivial dependence on the energy/momentum of the scattered particles.
We study the renormalization group of generic effective field theories that include gravity. We follow the on-shell amplitude approach, which provides a simple and efficient method to extract anomalous dimensions avoiding complications from gauge redundancies. As an invaluable tool we introduce a modified helicity $tilde{h}$ under which gravitons carry one unit instead of two. With this modified helicity we easily explain old and uncover new non-renormalization theorems for theories including gravitons. We provide complete results for the one-loop gravitational renormalization of a generic minimally coupled gauge theory with scalars and fermions and all orders in $M_{Pl}$, as well as for the renormalization of dimension-six operators including at least one graviton, all up to four external particles.
Using techniques developed in a previous paper three-point functions in field theories described by holographic renormalization group flows are computed. We consider a system of one active scalar and one inert scalar coupled to gravity. For the GPPZ flow, their dual operators create states that are interpreted as glueballs of the N=1 SYM theory, which lies at the infrared end of the renormalization group flow. The scattering amplitudes for three-glueball processes are calculated providing precise predictions for glueball decays in N=1 SYM theory. Numerical results for low-lying glueballs are included.
126 - Taejin Lee 2017
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا