Do you want to publish a course? Click here

Classical Set Theory: Theory of Sets and Classes

98   0   0.0 ( 0 )
 Added by Taras Banakh
 Publication date 2020
  fields
and research's language is English
 Authors Taras Banakh




Ask ChatGPT about the research

This is a short introductory course to Set Theory, based on axioms of von Neumann--Bernays--Godel (briefly NBG). The text can be used as a base for a lecture course in Foundations of Mathematics, and contains a reasonable minimum which a good (post-graduate) student in Mathematics should know about foundations of this science.



rate research

Read More

132 - Arnold Miller 1994
These are lecture notes from a course I gave at the University of Wisconsin during the Spring semester of 1993. Part 1 is concerned with Borel hierarchies. Section 13 contains an unpublished theorem of Fremlin concerning Borel hierarchies and MA. Section 14 and 15 contain new results concerning the lengths of Borel hierarchies in the Cohen and random real model. Part 2 contains standard results on the theory of Analytic sets. Section 25 contains Harringtons Theorem that it is consistent to have $Pi^1_2$ sets of arbitrary cardinality. Part 3 has the usual separation theorems. Part 4 gives some applications of Gandy forcing. We reverse the usual trend and use forcing arguments instead of Baire category. In particular, Louveaus Theorem on $Pi^0_alpha$ hyp-sets has a simpler proof using forcing.
240 - Ian Coley , Charles Weibel 2021
We develop the K-theory of sets with an action of a pointed monoid (or monoid scheme), analogous to the $K$-theory of modules over a ring (or scheme). In order to form localization sequences, we construct the quotient category of a nice regular category by a Serre subcategory.
The Doob convergence theorem implies that the set of divergence of any martingale has measure zero. We prove that, conversely, any $G_{deltasigma}$ subset of the Cantor space with Lebesgue-measure zero can be represented as the set of divergence of some martingale. In fact, this is effective and uniform. A consequence of this is that the set of everywhere converging martingales is ${bfPi}^1_1$-complete, in a uniform way. We derive from this some universal and complete sets for the whole projective hierarchy, via a general method. We provide some other complete sets for the classes ${bfPi}^1_1$ and ${bfSigma}^1_2$ in the theory of martingales.
In generic realizability for set theories, realizers treat unbounded quantifiers generically. To this form of realizability, we add another layer of extensionality by requiring that realizers ought to act extensionally on realizers, giving rise to a realizability universe $mathrm{V_{ex}}(A)$ in which the axiom of choice in all finite types ${sf AC}_{{sf FT}}$ is realized, where $A$ stands for an arbitrary partial combinatory algebra. This construction furnishes inner models of many set theories that additionally validate ${sf AC}_{{sf FT}}$, in particular it provides a self-validating semantics for $sf CZF$ (Constructive Zermelo-Fraenkel set theory) and $sf IZF$ (Intuitionistic Zermelo-Fraenkel set theory). One can also add large set axioms and many other principles.
We investigate the mathematics of a model of the human mind which has been proposed by the psychologist Jens Mammen. Mathematical realizations of this model consist of so-called emph{Mammen spaces}, where a Mammen space is a triple $(U,mathcal S,mathcal C)$, where $U$ is a non-empty set (the universe), $mathcal S$ is a perfect Hausdorff topology on $U$, and $mathcal Csubseteqmathcal P(U)$ together with $mathcal S$ satisfy certain axioms. We refute a conjecture put forward by J. Hoffmann-J{o}rgensen, who conjectured that the existence of a complete Mammen space implies the Axiom of Choice, by showing that in the first Cohen model, in which ZF holds but AC fails, there is a complete Mammen space. We obtain this by proving that in the first Cohen model, every perfect topology can be extended to a maximal perfect topology. On the other hand, we also show that if all sets are Lebesgue measurable, or all sets are Baire measurable, then there are no complete Mammen spaces with a countable universe. Finally, we investigate two new cardinal invariants $mathfrak u_M$ and $mathfrak u_T$ associated with complete Mammen spaces and maximal perfect topologies, and establish some basic inequalities that are provable in ZFC. We show $mathfrak u_M=mathfrak u_T=2^{aleph_0}$ follows from Martins Axiom, and, contrastingly, we show that $aleph_1=mathfrak u_M=mathfrak u_T<2^{aleph_0}=aleph_2$ in the Baumgartner-Laver model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا