No Arabic abstract
Polarization switching mechanisms in ferroelectric materials are fundamentally linked to local domain structure and presence of the structural defects, which both can act as nucleation and pinning centers and create local electrostatic and mechanical depolarization fields affecting wall dynamics. However, the general correlative mechanisms between domain structure and polarization dynamics are only weakly explored, precluding insight into the associated physical mechanisms. Here, the correlation between local domain structures and switching behavior in ferroelectric materials is explored using the convolutional encoder-decoder networks, enabling the image to spectral (im2spec) and spectral to image (spec2im) translations via encoding latent variables. The latter reflects the assumption that the relationship between domain structure and polarization switching is parsimonious, i.e. is based upon a small number of local mechanisms. The analysis of latent variables distributions and their real space representations provides insight into the predictability of the local switching behavior, and hence associated physical mechanisms. We further pose that the regions where these correlative relationships are violated, i.e. predictability of the polarization dynamics from domain structure is reduced, represent the obvious target for detailed studies, e.g. in the context of automated experiments. This approach provides a workflow to establish the presence of correlation between local spectral responses and local structure and can be universally applied to spectral imaging techniques such as PFM, scanning tunneling microscopy (STM) and spectroscopy, and electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM).
We study the free energy landscape of a minimal model for relaxor ferroelectrics. Using a variational method which includes leading correlations beyond the mean-field approximation as well as disorder averaging at the level of a simple replica theory, we find metastable paraelectric states with a stability region that extends to zero temperature. The free energy of such states exhibits an essential singularity for weak compositional disorder pointing to their necessary occurrence. Ferroelectric states appear as local minima in the free energy at high temperatures and become stable below a coexistence temperature $T_c$. We calculate the phase diagram in the electric field-temperature plane and find a coexistence line of the polar and non-polar phases which ends at a critical point. First-order phase transitions are induced for fields sufficiently large to cross the region of stability of the metastable paraelectric phase. These polar and non-polar states have distinct structure factors from those of conventional ferroelectrics. We use this theoretical framework to compare and to gain physical understanding of various experimental results in typical relaxors.
We study the influence of oxygen vacancies on the formation of charged 180$^circ$ domain walls in ferroelectric BaTiO$_3$ using first principles calculations. We show that it is favorable for vacancies to assemble in crystallographic planes, and that such clustering is accompanied by the formation of a charged domain wall. The domain wall has negative bound charge, which compensates the nominal positive charge of the vacancies and leads to a vanishing density of free charge at the wall. This is in contrast to the positively charged domain walls, which are nearly completely compensated by free charge from the bulk. The results thus explain the experimentally observed difference in electronic conductivity of the two types of domain walls, as well as the generic prevalence of charged domain walls in ferroelectrics. Moreover, the explicit demonstration of vacancy driven domain wall formation implies that specific charged domain wall configurations may be realized by bottom-up design for use in domain wall based information processing.
Tunnelling Two-Level Systems (TLS) dominate the physics of glasses at low temperatures. Yet TLS are extremely rare and it is extremely difficult to directly observe them $it{in , silico}$. It is thus crucial to develop simple structural predictors that can provide markers for determining if a TLS is present in a given glass region. It has been speculated that Quasi-Localized vibrational Modes (QLM) are closely related to TLS, and that one can extract information about TLS from QLM. In this work we address this possibility. In particular, we investigate the degree to which a linear or non-linear vibrational mode analysis can predict the location of TLS independently found by energy landscape exploration. We find that even though there is a notable spatial correlation between QLM and TLS, in general TLS are strongly non-linear and their global properties cannot be predicted by a simple normal mode analysis.
Using the model system of ferroelectric domain walls, we explore the effects of long-range dipolar interactions and periodic ordering on the behavior of pinned elastic interfaces. In piezoresponse force microscopy studies of the characteristic roughening of intrinsic 71{deg} stripe domains in BiFeO$_3$ thin films, we find unexpectedly high values of the roughness exponent {zeta} = 0.74 $pm$ 0.10, significantly different from those obtained for artificially written domain walls in this and other ferroelectric materials. The large value of the exponent suggests that a random field-dominated pinning, combined with stronger disorder and strain effects due to the step-bunching morphology of the samples, could be the dominant source of pinning in the system.
Much progress has been made over a long period, spanning more than a century, in understanding the atomic arrangement on various length scales of noncrystalline chalcogens and their transitions upon certain external stimuli. However, it is broadly admitted that there are still several unsettled issues that call for proper rationalization. The current review presents an assessment of Raman scattering studies of noncrystalline phases of elemental chalcogens and their mixtures. First, a few remarks on the analysis of Raman data, related to polarization details and spectra reduction are presented. The effect of temperature, pressure and irradiation on the structure of chalcogens is reviewed in detail. As only selenium can form a stable glass at ambient conditions, the interest on sulfur and tellurium has been placed in the melt and the amorphous phase, respectively, whereas reference is also made to the sporadic structural studies of glassy sulfur at low temperatures. It is shown how Raman scattering can be exploited to explore unique phenomena emerging in the liquid state of sulfur, offering valuable information on the details of lambda transition including various thermodynamic related properties. The subtle nature of this transition in selenium is also discussed. Tellurium is not only impossible to be prepared in the bulk glassy state, but also forms a very liable to crystallization amorphous film. Therefore, the emphasis is placed on light induced nanostructuring and effects related to photo amorphization and photo oxidation.