Do you want to publish a course? Click here

Twisted Trilayer Graphene: a Precisely Tunable Platform for Correlated Electrons

78   0   0.0 ( 0 )
 Added by Ziyan Zhu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce twisted trilayer graphene (tTLG) with two independent twist angles as an ideal system for the precise tuning of the electronic interlayer coupling to maximize the effect of correlated behaviors. As established by experiment and theory in the related twisted bilayer graphene system, van Hove singularities (VHS) in the density of states can be used as a proxy of the tendency for correlated behaviors. To explore the evolution of VHS in the twist-angle phase space of tTLG, we present a general low-energy electronic structure model for any pair of twist angles. We show that the basis of the model has infinite dimensions even at a finite energy cutoff and that no Brillouin zone exists even in the continuum limit. Using this model, we demonstrate that the tTLG system exhibits a wide range of magic angles at which VHS merge and the density of states has a sharp peak at the charge-neutrality point through two distinct mechanisms: the incommensurate perturbation of twisted bilayer graphenes flat bands or the equal hybridization between two bilayer moire superlattices.



rate research

Read More

Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBLG) presents a unique platform to study correlation phenomena, in which the Coulomb energy dominates over the quenched kinetic energy as a result of hybridized flat bands. Extending this approach to the case of twisted multilayer graphene would allow even higher control over the band structure because of the reduced symmetry of the system. Here, we study electronic transport properties in twisted trilayer graphene (tTLG, bilayer on top of monolayer graphene heterostructure). We observed the formation of van Hove singularities which are highly tunable by twist angle and displacement field and can cause strong correlation effects under optimum conditions, including superconducting states. We provide basic theoretical interpretation of the observed electronic structure.
Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulators with integer QH effects could appear in lattice models with complex hopping parameters even at zero magnetic field. The ABC-trilayer graphene/hexagonal boron nitride (TLG/hBN) moire superlattice provides an attractive platform to explore Chern insulators because it features nearly flat moire minibands with a valley-dependent electrically tunable Chern number. Here we report the experimental observation of a correlated Chern insulator in a TLG/hBN moire superlattice. We show that reversing the direction of the applied vertical electric field switches TLG/hBNs moire minibands between zero and finite Chern numbers, as revealed by dramatic changes in magneto-transport behavior. For topological hole minibands tuned to have a finite Chern number, we focus on 1/4 filling, corresponding to one hole per moire unit cell. The Hall resistance is well quantized at h/2e2, i.e. C = 2, for |B| > 0.4 T. The correlated Chern insulator is ferromagnetic, exhibiting significant magnetic hysteresis and a large anomalous Hall signal at zero magnetic field. Our discovery of a C = 2 Chern insulator at zero magnetic field should open up exciting opportunities for discovering novel correlated topological states, possibly with novel topological excitations, in nearly flat and topologically nontrivial moire minibands.
Motivated by recent experiments indicating strong superconductivity and intricate correlated insulating and flavor-polarized physics in mirror-symmetric twisted trilayer graphene, we study the effects of interactions in this system close to the magic angle, using a combination of analytical and numerical methods. We identify asymptotically exact correlated many-body ground states at all integer filling fractions $ u$ of the flat bands. To determine their fate when moving away from these fine-tuned points, we apply self-consistent Hartree-Fock numerics and analytic perturbation theory, with good agreement between the two approaches. This allows us to construct a phase diagram for the system as a function of $ u$ and the displacement field, the crucial experimental tuning parameter of the system, and study the spectra of the different phases. The phase diagram is dominated by a correlated semimetallic intervalley coherent state and an insulating sublattice-polarized phase around charge neutrality, $ u=0$, with additional spin-polarization being present at quarter ($ u=-2$) or three quarter ($ u=+2$) fillings of the quasi-flat bands. We further study the superconducting instabilities emerging from these correlated states, both in the absence and in the additional presence of electron-phonon coupling, also taking into account possible Wess-Zumino-Witten terms. In the experimentally relevant regime, we find triplet pairing to dominate, possibly explaining the observed violation of the Pauli limit. Our results have several consequences for experiments as well as future theoretical work and illustrate the rich physics resulting from the interplay of almost flat bands and dispersive Dirac cones in twisted trilayer graphene.
Multilayered van der Waals structures often lack periodicity, which difficults their modeling. Building on previous work for bilayers, we develop a tight-binding based, momentum space formalism capable of describing incommensurate multilayered van der Waals structures for arbitrary lattice mismatch and/or misalignment between different layers. We demonstrate how the developed formalism can be used to model angle-resolved photoemission spectroscopy measurements, and scanning tunnelling spectroscopy which can probe the local and total density of states. The general method is then applied to incommensurate twisted trilayer graphene structures. It is found that the coupling between the three layers can significantly affect the low energy spectral properties, which cannot be simply attributed to the pairwise hybridization between the layers.
We study the symmetries of twisted trilayer graphenes band structure under various extrinsic perturbations, and analyze the role of long-range electron-electron interactions near the first magic angle. The electronic structure is modified by these interactions in a similar way to twisted bilayer graphene. We analyze electron pairing due to long-wavelength charge fluctuations, which are coupled among themselves via the Coulomb interaction and additionally mediated by longitudinal acoustic phonons. We find superconducting phases with either spin singlet/valley triplet or spin triplet/valley singlet symmetry, with critical temperatures of up to a few Kelvin for realistic choices of parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا