No Arabic abstract
Recently, there is a growing interest in study quantum mechanics from the information geometry perspective, where a quantum state is depicted with a point in the projective Hilbert space. By taking quantum Fisher information (QFI) as the metric of projective Hilbert spaces, estimating a small parameter shift is equivalent to distinguishing neighboring quantum states along a given curve. Henceforth, information geometry plays a significant role in the single parameter estimation. However, the absence of high dimensional measures limits its applications in studying the multi-parameter systems. In this paper, we will discuss the physical implications of the volume element of QFI. It measures the intrinsic density of quantum states (IDQS) in projective Hilbert spaces, which is, then, a measure to define the (over) completeness relation of a class of quantum states. As an application, IDQS can be used in quantum measurement and multi-parameter estimation. We find the density of distinguishable states (DDS) for a set of efficient estimators is measured by the invariant volume of the classical Fisher information, which is the classical counterpart of QFI and serves as the metric of statistical manifolds. Correspondingly, a determinant form of quantum Cram{e}r-Rao inequality is proposed to quantify the ability to infer the IDQS via quantum measurement. As a result, we find a gap between IDQS and maximal DDS over the measurements. The gap has tight connections with the uncertainty relationship. Exemplified with the three-level system with two parameters, we find the maximal DDS attained via the emph{vertex measurements} (MvDDS) equals the square root of the quantum geometric tensors determinant. It indicates the square gap between IDQS and MvDDS is proportional to the square of Berry curvature.
We generalize the quantum Fisher information flow proposed by Lu textit{et al}. [Phys. Rev. A textbf{82}, 042103 (2010)] to the multi-parameter scenario from the information geometry perspective. A measure named the textit{intrinsic density flow} (IDF) is defined with the time-variation of the intrinsic density of quantum states (IDQS). IDQS measures the local distinguishability of quantum states in state manifolds. The validity of IDF is clarified with its vanishing under the parameter-independent unitary evolution and outward-flow (negativity) under the completely positive-divisible map. The temporary backflow (positivity) of IDF is thus an essential signature of the non-Markovian dynamics. Specific for the time-local master equation, the IDF decomposes according to the channels, and the positive decay rate indicates the inwards flow of the sub-IDF. As time-dependent scalar fields equipped on the state space, the distribution of IDQS and IDF comprehensively illustrates the distortion of state space induced by its environment. As example, a typical qubit model is given.
This review aims at gathering the most relevant quantum multi-parameter estimation methods that go beyond the direct use of the Quantum Fisher Information concept. We discuss in detail the Holevo Cramer-Rao bound, the Quantum Local Asymptotic Normality approach as well as Bayesian methods. Even though the fundamental concepts in the field have been laid out more than forty years ago, a number of important results have appeared much more recently. Moreover, the field drew increased attention recently thanks to advances in practical quantum metrology proposals and implementations that often involve estimation of multiple parameters simultaneously. Since these topics are spread in the literature and often served in a very formal mathematical language, one of the main goals of this review is to provide a largely self-contained work that allows the reader to follow most of the derivations and get an intuitive understanding of the interrelations between different concepts using a set of simple yet representative examples involving qubit and Gaussian shift models.
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cramer-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.
When collective measurements on an infinite number of copies of identical quantum states can be performed, the precision limit of multi-parameter quantum estimation is quantified by the Holevo bound. In practice, however, the collective measurements are always restricted to a finite number of quantum states, under which the precision limit is still poorly understood. Here we provide an approach to study the multi-parameter quantum estimation with general $p$-local measurement where the collective measurements are restricted to at most $p$ copies of quantum states. We demonstrate the power of the approach by providing a hierarchy of nontrivial tradeoff relations for multi-parameter quantum estimation which quantify the incompatibilities of general $p$-local measurement. These tradeoff relations also provide a necessary condition for the saturation of the quantum Cramer-Rao bound under $p$-local measurement, which is shown reducing to the weak commutative condition when $prightarrow infty$. To further demonstrate the versatility of the approach, we also derive another set of tradeoff relations in terms of the right logarithmic operators(RLD).
We introduce a new approach to evaluating entangled quantum networks using information geometry. Quantum computing is powerful because of the enhanced correlations from quantum entanglement. For example, larger entangled networks can enhance quantum key distribution (QKD). Each network we examine is an n-photon quantum state with a degree of entanglement. We analyze such a state within the space of measured data from repeated experiments made by n observers over a set of identically-prepared quantum states -- a quantum state interrogation in the space of measurements. Each observer records a 1 if their detector triggers, otherwise they record a 0. This generates a string of 1s and 0s at each detector, and each observer can define a binary random variable from this sequence. We use a well-known information geometry-based measure of distance that applies to these binary strings of measurement outcomes, and we introduce a generalization of this length to area, volume and higher-dimensional volumes. These geometric equations are defined using the familiar Shannon expression for joint and mutual entropy. We apply our approach to three distinct tripartite quantum states: the GHZ state, the W state, and a separable state P. We generalize a well-known information geometry analysis of a bipartite state to a tripartite state. This approach provides a novel way to characterize quantum states, and it may have favorable scaling with increased number of photons.