No Arabic abstract
Surveys of protoplanetary disks in star-forming regions of similar age revealed significant variations in average disk mass between some regions. For instance, disks in the Orion Nebular Cluster (ONC) and Corona Australis (CrA) are on average smaller than disks observed in Lupus, Taurus, Chamaeleon I or Ophiuchus. In contrast to previous models that study truncation of disks at a late stage of their evolution, we investigate whether disks may already be born with systematically smaller disk sizes in more massive star-forming regions as a consequence of enhanced ionization rates. Assuming various cosmic-ray ionization rates, we compute the resistivities for ambipolar diffusion and Ohmic dissipation with a chemical network, and perform 2D non-ideal magnetohydrodynamical protostellar collapse simulations. A higher ionization rate leads to stronger magnetic braking, and hence to the formation of smaller disks. Accounting for recent findings that protostars act as forges of cosmic rays and considering only mild attenuation during the collapse phase, we show that a high average cosmic-ray ionization rate in star-forming regions like the ONC or CrA can explain the detection of smaller disks in these regions. Our results show that on average a higher ionization rate leads to the formation of smaller disks. Therefore, smaller disks in regions of similar age can be the consequence of different levels of ionization, and may not exclusively be caused by disk truncation via external photoevaporation. We strongly encourage observations that allow measuring the cosmic-ray ionization degrees in different star-forming regions to test our hypothesis.
Spatial correlations among proto-planetary disk orientations carry unique information on physics of multiple star formation processes. We select five nearby star-forming regions that comprise a number of proto-planetary disks with spatially-resolved images with ALMA and HST, and search for the mutual alignment of the disk axes. Specifically, we apply the Kuiper test to examine the statistical uniformity of the position angle (PA: the angle of the major axis of the projected disk ellipse measured counter-clockwise from the north) distribution. The disks located in the star-forming regions, except the Lupus clouds, do not show any signature of the alignment, supporting the random orientation. Rotational axes of 16 disks with spectroscopic measurement of PA in the Lupus III cloud, a sub-region of the Lupus field, however, exhibit a weak and possible departure from the random distribution at a $2sigma$ level, and the inclination angles of the 16 disks are not uniform as well. Furthermore, the mean direction of the disk PAs in the Lupus III cloud is parallel to the direction of its filament structure, and approximately perpendicular to the magnetic field direction. We also confirm the robustness of the estimated PAs in the Lupus clouds by comparing the different observations and estimators based on three different methods including sparse modeling. The absence of the significant alignment of the disk orientation is consistent with the turbulent origin of the disk angular momentum. Further observations are required to confirm/falsify the possible disk alignment in the Lupus III cloud.
We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. Through spectroscopy of some of the more promising candidates, we have found 18 new members of Taurus. They have spectral types ranging from mid M to early L and they include the four faintest known members in extinction-corrected K_s, which should have masses as low as ~4-5 M_Jup according to evolutionary models. Two of the coolest new members (M9.25, M9.5) have mid-IR excesses that indicate the presence of disks. Two fainter objects with types of M9-L2 and M9-L3 also have red mid-IR colors relative to photospheres at <=L0, but since the photospheric colors are poorly defined at >L0, it is unclear whether they have excesses from disks. We also have obtained spectra of candidate members of the IC 348 and NGC 1333 clusters in Perseus that were identified by Luhman et al. (2016). Eight candidates are found to be probable members, three of which are among the faintest and least-massive known members of the clusters (~5 M_Jup).
We observed HCO$^+$ $J=1-0$ and H$^{13}$CO$^+$ $J=1-0$ emission towards the five protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480 as part of the MAPS project. HCO$^+$ is detected and mapped at 0.3arcsec,resolution in all five disks, while H$^{13}$CO$^+$ is detected (SNR$>6 sigma$) towards GM Aur and HD 163296 and tentatively detected (SNR$>3 sigma$) towards the other disks by a matched filter analysis. Inside a radius of $Rsim 100$ au, the HCO$^+$ column density is flat or shows a central dip. At outer radii ($gtrsim 100$ au), the HCO$^+$ column density decreases outwards, while the column density ratio of HCO$^+$/CO is mostly in the range of $sim 10^{-5}-10^{-4}$. We derived the HCO$^+$ abundance in the warm CO-rich layer, where HCO$^+$ is expected to be the dominant molecular ion. At $Rgtrsim 100$ au, the HCO$^+$ abundance is $sim 3 times 10^{-11} - 3times 10^{-10}$, which is consistent with a template disk model with X-ray ionization. At the smaller radii, the abundance decreases inwards, which indicates that the ionization degree is lower in denser gas, especially inside the CO snow line, where the CO-rich layer is in the midplane. Comparison of template disk models with the column densities of HCO$^+$, N$_2$H$^+$, and N$_2$D$^+$ indicates that the midplane ionization rate is $gtrsim 10^{-18}$ s$^{-1}$ for the disks around IM Lup, AS 209, and HD 163296. We also find hints of an increased HCO$^+$ abundance around the location of dust continuum gaps in AS 209, HD 163296, and MWC 480. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
The evolution of protoplanetary disks is dominated by the conservation of angular momentum, where the accretion of material onto the central star is driven by viscous expansion of the outer disk or by disk winds extracting angular momentum without changing the disk size. Studying the time evolution of disk sizes allows us therefore to distinguish between viscous stresses or disk winds as the main mechanism of disk evolution. Observationally, estimates of the disk gaseous outer radius are based on the extent of the CO rotational emission, which, during the evolution, is also affected by the changing physical and chemical conditions in the disk. We use physical-chemical DALI models to study how the extent of the CO emission changes with time in a viscously expanding disk and investigate to what degree this observable gas outer radius is a suitable tracer of viscous spreading and whether current observations are consistent with viscous evolution. We find that the gas outer radius (R_co) measured from our models matches the expectations of a viscously spreading disk: R_co increases with time and for a given time R_co is larger for a disk with a higher viscosity alpha_visc. However, in the extreme case where the disk mass is low (less than 10^-4 Msun) and alpha_visc is high (larger than 10^-2), R_co will instead decrease with time as a result of CO photodissociation in the outer disk. For most disk ages R_co is up to 12x larger than the characteristic size R_c of the disk, and R_co/R_c is largest for the most massive disk. As a result of this difference, a simple conversion of R_co to alpha_visc will overestimate the true alpha_visc of the disk by up to an order of magnitude. We find that most observed gas outer radii in Lupus can be explained using a viscously evolving disk that starts out small (R_c = 10 AU) and has a low viscosity (alpha_visc = 10^-4 - 10^-3).
Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key to understand the formation of nitrogen bearing species in early solar system analogs. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Using HIFI on the Herschel Space Observatory we detect, for the first time, the ground-state rotational emission of ortho-NH$_3$ in a protoplanetary disk, around TW Hya. We use detailed models of the disks physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explore two radial distributions ( confined to $<$60 au like the millimeter-sized grains) and two vertical distributions (near the midplane where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. We use physical-chemical models to reproduce the fluxes with assuming that water and ammonia are co-spatial. We infer ammonia gas-phase masses of 0.7-11.0 $times$10$^{21}$ g. For water, we infer gas-phase masses of 0.2-16.0 $times$10$^{22}$ g. This corresponds to NH$_3$/H$_2$O abundance ratios of 7%-84%, assuming that water and ammonia are co-located. Only in the most compact and settled adopted configuration is the inferred NH$_3$/H$_2$O consistent with interstellar ices and solar system bodies of $sim$ 5%-10%. Volatile release in the midplane may occur via collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, e.g., through growth of small grains into pebbles or larger.