Do you want to publish a course? Click here

Stability of gene regulatory networks

86   0   0.0 ( 0 )
 Added by Yipei Guo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Homeostasis of protein concentrations in cells is crucial for their proper functioning, and this requires concentrations (at their steady-state levels) to be stable to fluctuations. Since gene expression is regulated by proteins such as transcription factors (TFs), the full set of proteins within the cell constitutes a large system of interacting components. Here, we explore factors affecting the stability of this system by coupling the dynamics of mRNAs and protein concentrations in a growing cell. We find that it is possible for protein concentrations to become unstable if the regulation strengths or system size becomes too large, and that other global structural features of the networks can dramatically enhance the stability of the system. In particular, given the same number of proteins, TFs, number of interactions, and regulation strengths, a network that resembles a bipartite graph with a lower fraction of interactions that target TFs has a higher chance of being stable. By scrambling the $textit{E. coli.}$ transcription network, we find that the randomized network with the same number of regulatory interactions is much more likely to be unstable than the real network. These findings suggest that constraints imposed by system stability could have played a role in shaping the existing regulatory network during the evolutionary process. We also find that contrary to what one might expect from random matrix theory and what has been argued in the literature, the degradation rate of mRNA does not affect whether the system is stable.



rate research

Read More

The topological analysis of biological networks has been a prolific topic in network science during the last decade. A persistent problem with this approach is the inherent uncertainty and noisy nature of the data. One of the cases in which this situation is more marked is that of transcriptional regulatory networks (TRNs) in bacteria. The datasets are incomplete because regulatory pathways associated to a relevant fraction of bacterial genes remain unknown. Furthermore, direction, strengths and signs of the links are sometimes unknown or simply overlooked. Finally, the experimental approaches to infer the regulations are highly heterogeneous, in a way that induces the appearance of systematic experimental-topological correlations. And yet, the quality of the available data increases constantly. In this work we capitalize on these advances to point out the influence of data (in)completeness and quality on some classical results on topological analysis of TRNs, specially regarding modularity at different levels. In doing so, we identify the most relevant factors affecting the validity of previous findings, highlighting important caveats to future prokaryotic TRNs topological analysis.
Methods for time series prediction and classification of gene regulatory networks (GRNs) from gene expression data have been treated separately so far. The recent emergence of attention-based recurrent neural networks (RNN) models boosted the interpretability of RNN parameters, making them appealing for the understanding of gene interactions. In this work, we generated synthetic time series gene expression data from a range of archetypal GRNs and we relied on a dual attention RNN to predict the gene temporal dynamics. We show that the prediction is extremely accurate for GRNs with different architectures. Next, we focused on the attention mechanism of the RNN and, using tools from graph theory, we found that its graph properties allow to hierarchically distinguish different architectures of the GRN. We show that the GRNs respond differently to the addition of noise in the prediction by the RNN and we relate the noise response to the analysis of the attention mechanism. In conclusion, this work provides a a way to understand and exploit the attention mechanism of RNN and it paves the way to RNN-based methods for time series prediction and inference of GRNs from gene expression data.
134 - S. Jalan , C. Y. Ung , J. Bhojwani 2012
We analyze the gene expression data of Zebrafish under the combined framework of complex networks and random matrix theory. The nearest neighbor spacing distribution of the corresponding matrix spectra follows random matrix predictions of Gaussian orthogonal statistics. Based on the eigenvector analysis we can divide the spectra into two parts, first part for which the eigenvector localization properties match with the random matrix theory predictions, and the second part for which they show deviation from the theory and hence are useful to understand the system dependent properties. Spectra with the localized eigenvectors can be characterized into three groups based on the eigenvalues. We explore the position of localized nodes from these different categories. Using an overlap measure, we find that the top contributing nodes in the different groups carry distinguished structural features. Furthermore, the top contributing nodes of the different localized eigenvectors corresponding to the lower eigenvalue regime form different densely connected structure well separated from each other. Preliminary biological interpretation of the genes, associated with the top contributing nodes in the localized eigenvectors, suggests that the genes corresponding to same vector share common features.
Based on a recently proposed non-equilibrium mechanism for spatial pattern formation [cond-mat/0312366] we study how morphogenesis can be controlled by locally coupled discrete dynamical networks, similar to gene regulation networks of cells in a developing multicellular organism. As an example we study the developmental problem of domain formation and proportion regulation in the presence of noise and cell flow. We find that networks that solve this task exhibit a hierarchical structure of information processing and are of similar complexity as developmental circuits of living cells. A further focus of this paper is a detailed study of noise-induced dynamics, which is a major ingredient of the control dynamics in the developmental network model. A master equation for domain boundary readjustments is formulated and solved for the continuum limit. Evidence for a first order phase transition in equilibrium domain size at vanishing noise is given by finite size scaling. A second order phase transition at increased cell flow is studied in a mean field approximation. Finally, we discuss potential applications.
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا