No Arabic abstract
DEAP-3600 is a single-phase liquid argon detector aiming to directly detect Weakly Interacting Massive Particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon spin-independent, isoscalar cross section. This study reinterprets this result within a Non-Relativistic Effective Field Theory framework, and further examines how various possible substructures in the local dark matter halo may affect these constraints. Such substructures are hinted at by kinematic structures in the local stellar distribution observed by the Gaia satellite and other recent astronomical surveys. These include the Gaia Sausage (or Enceladus), as well as a number of distinct streams identified in recent studies. Limits are presented for the coupling strength of the effective contact interaction operators $mathcal{O}_1$, $mathcal{O}_3$, $mathcal{O}_5$, $mathcal{O}_8$, and $mathcal{O}_{11}$, considering isoscalar, isovector, and xenonphobic scenarios, as well as the specific operators corresponding to millicharge, magnetic dipole, electric dipole, and anapole interactions. The effects of halo substructures on each of these operators are explored as well, showing that the $mathcal{O}_5$ and $mathcal{O}_8$ operators are particularly sensitive to the velocity distribution, even at dark matter masses above 100 GeV/$c^2$.
Dark matter particles with Planck-scale mass ($simeq10^{19}text{GeV}/c^2$) arise in well-motivated theories and could be produced by several cosmological mechanisms. Using a blind analysis of data collected over a 813 d live time with DEAP-3600, a 3.3 t single-phase liquid argon-based dark matter experiment at SNOLAB, a search for supermassive dark matter was performed, looking for multiple-scatter signals. No candidate signal events were observed, leading to the first direct detection constraints on Planck-scale mass dark matter. Leading limits constrain dark matter masses between $8.3times10^{6}$ and $1.2times10^{19} text{GeV}/c^2$, and cross sections for scattering on $^{40}$Ar between $1.0times10^{-23}$ and $2.4times10^{-18} text{cm}^2$. These are used to constrain two composite dark matter models.
This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fiducial exposure of 9.87 tonne-days) of data taken with the nearly full detector during the initial filling phase demonstrates the detector performance and the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage $<1.2times 10^{-7}$ (90% C.L.) between 16 and 33 keV$_{ee}$. No candidate signal events are observed, which results in the leading limit on WIMP-nucleon spin-independent cross section on argon, $<1.2times 10^{-44}$ cm$^2$ for a 100 GeV/c$^2$ WIMP mass (90% C.L.).
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) has been designed for a direct detection search for particle dark matter using a single-phase liquid argon target. The projected cross section sensitivity for DEAP-3600 to the spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is $10^{-46}~rm{cm}^{2}$ for a 100 GeV/$c^2$ WIMP mass with a fiducial exposure of 3 tonne-years. This paper describes the physical properties and construction of the DEAP-3600 detector.
The first-year results from DEAP-3600, a single-phase liquid argon direct-detection dark matter experiment, were recently reported. At first sight, they seem to provide no new constraints, as the limit lies well within the region already excluded by three different xenon experiments: LUX, PandaX-II, and XENON1T. We point out, however, that this conclusion is not necessarily true, for it is based on the untested assumption that the dark matter particle couples equally to protons and neutrons. For the more general case of isosping-violating dark matter, we find that there are regions in the parameter space where DEAP-3600 actually provides the most stringent limits on the dark matter-proton spin-independent cross section. Such regions correspond to the so-called Xenonphobic dark matter scenario, for which the neutron-to-proton coupling ratio is close to $-0.7$. Our results seem to signal the beginning of a new era in which the complementarity among different direct detection targets will play a crucial role in the determination of the fundamental properties of the dark matter particle.
DEAP-3600 is a single-phase liquid argon (LAr) direct-detection dark matter experiment, operating 2 km underground at SNOLAB (Sudbury, Canada). The detector consists of 3279 kg of LAr contained in a spherical acrylic vessel. This paper reports on the analysis of a 758 tonnecdot day exposure taken over a period of 231 live-days during the first year of operation. No candidate signal events are observed in the WIMP-search region of interest, which results in the leading limit on the WIMP-nucleon spin-independent cross section on a LAr target of $3.9times10^{-45}$ cm$^{2}$ ($1.5times10^{-44}$ cm$^{2}$) for a 100 GeV/c$^{2}$ (1 TeV/c$^{2}$) WIMP mass at 90% C. L. In addition to a detailed background model, this analysis demonstrates the best pulse-shape discrimination in LAr at threshold, employs a Bayesian photoelectron-counting technique to improve the energy resolution and discrimination efficiency, and utilizes two position reconstruction algorithms based on PMT charge and photon arrival times.