No Arabic abstract
Selective solar absorbers (SSAs) with high performance are the key to concentrated solar power systems. Optical metamaterials are emerging as a promising strategy to enhance selective photon absorption, however, the high-temperature resistance (>500C) remains as one of the main challenges for their practical applications. Here, a multilayered metamaterial system (Al2O3/W/SiO2/W) based on metal-insulator-metal (MIM) resonance effect has been demonstrated with high solar absorptance over 92%, low thermal emittance loss below 6%, and significant high-temperature resistance: it has been proved that the optical performance remains 93.6% after 1-hour thermal annealing under ambient environment up to 500C, and 94.1% after 96-hour thermal cycle test at 400C, which is also confirmed by the microscopic morphology characterization. The spectral selectivity of fabricated SSAs is angular independent and polarization insensitive. Outdoor tests demonstrate that a peak temperature rise (193.5C) can be achieved with unconcentrated solar irradiance and surface abrasion resistance test yields that SSAs have a robust resistance to abrasion attack for engineering applications.
It is of significance to incorporate spectral selectivity technology into solar thermal engineering, especially at high operational temperatures. This work demonstrates spectrally selective solar absorbers made of multilayer tungsten, silica, and alumina thin films that are angular insensitive and polarization-independent. An overall absorptance of 88.1% at solar irradiance wavelength, a low emittance of 7.0% at infrared thermal wavelength, and a high solar to heat efficiency of 79.9% are identified. Additionally, it shows the annealed samples maintain an extremely high absorption in solar radiation regime over at least 600 C and the solar absorbers after thermal annealing at 800 C still work well in a CSP system with an even high concentration factor of over 100.
A galvanic displacement reaction-based, room-temperature dip-and-dry technique is demonstrated for fabricating selectively solar-absorbing plasmonic nanostructure-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15{deg}, to 0.97 at 35{deg}, to 0.79 at 80{deg}) and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200{deg}C. Along with the performance of the PNFs, the simplicity, inexpensiveness and environment-friendliness of the dip-and-dry technique makes it an appealing alternative to current methods for fabricating selective solar absorbers.
The superconductivities of samples prepared by several procedures were found to degrade under ambient environment. The degradation mechanism was studied by measuring the change of surface chemical composition of dense MgB2 pellets (prepared by hot isostatic pressure, HIPed) under atmospheric exposure using X-ray Photoelectron Spectroscopy (XPS). Results showed that samples with poor connectivity between grains and with smaller grain sizes degrade with time when exposed to ambient conditions. In these samples, the Tc did not change with time, but the superconducting transition became broader and the Meissner fraction decreased. In contrast, our well-sintered and the HIPed samples remained stable for several months under ambient condition. The degradation was found to be related to surface decomposition as observed by XPS. We observed the formation of oxidized Mg, primarily in the form of a Mg hydroxide, the increase of C and O contents, and the reduction of B concentration in the surface layer of MgB2 samples.
A polarization-independent reconfigurable frequency selective rasorber (FSR)/absorber with low insertion loss based on diodes is proposed in this paper. The presented structure consists of a lossy layer based on square loops and a bandpass frequency-selective surface. These two layers are separated by an air layer. Each layer has an embedded bias network that provides the bias voltage to the diodes through metallic via. This configuration can avoid undesirable effects associated with the additional biasing wire. When the diodes are in off-state, the structure is in FSR mode and exhibits a transmission window at 4.28GHz with only 0.69dB insertion loss (IL) within the absorption bands. While diodes are in on-state and the structure switches to absorber mode, it achieves perfect absorption with absorptivity of over 90% ranging from 2.8 to 5.2 GHz. An equivalent circuit model (ECM) is developed to analyse the physical mechanism of the structure. A prototype of the proposed architecture is fabricated and measured, where reasonable agreements between simulations and measurements are observed, verifying the effectiveness of this design.
Power-conversion efficiency is a critical factor for the wider adoption of solar-cell modules. Thin-film solar cells are cheap and easy to manufacture, but their efficiencies are low compared to crystalline-silicon solar cells and need to be improved. A thin-film solar cell with two absorber layers (instead of only one), with bandgap energy graded in both, can capture solar photons in a wider spectral range. With a 300-nm-thick CIGS~absorber layer and an 870-nm-thick CZTSSe~absorber layer, an efficiency of $34.45%$ is predicted by a detailed optoelectronic model, provided that the grading of bandgap energy is optimal in both absorber layers.