Do you want to publish a course? Click here

Light-nuclei production and search for the QCD critical point

101   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the potential of light-nuclei measurement in heavy-ion collisions at intermediate energies for the search of the hypothetical QCD critical end-point. A previous proposal based on neutron density fluctuations has brought appealing experimental evidences of a maximum in a ratio involving tritons, protons and deuterons, ${cal O}_{tpd}$. However these results are difficult to reconcile with the state-of-the-art statistical thermal model predictions. Based on the idea that the QCD critical point can lead to a substantial attraction among nucleons, we propose new ratios involving $^4$He in which the maximum would be more evident. We argue that the experimental extraction is feasible by presenting actual measurements at low and high collision energies. We also illustrate the possible behavior of these ratios at intermediate energies applying the semiclassical method based on flucton paths using preliminary STAR data for ${cal O}_{tpd}$.



rate research

Read More

A systematic search for a critical point in the phase diagram of QCD matter is underway at the Relativistic Heavy Ion Collider (RHIC) and is planned at several future facilities. Its existence, if confirmed, and its location will greatly enhance our understanding of QCD. In this note we emphasize several important issues that are often not fully recognized in theoretical interpretations of experimental results relevant to the critical point search. We discuss ways in which our understanding on these issues can be improved.
139 - Lipei Du 2021
Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued to follow different trajectories in the QCD phase diagram in which the QCD critical point serves as a landmark. Using a (1+1)-dimensional model setting with transverse homogeneity, we study the complexities introduced by the fact that the evolution history of each fireball cannot be characterized by a single trajectory but rather covers an entire swath of the phase diagram, with the finally emitted hadron spectra integrating over contributions from many different trajectories. Studying the phase diagram trajectories of fluid cells at different space-time rapidities, we explore how baryon diffusion shuffles them around, and how they are affected by critical dynamics near the QCD critical point. We find a striking insensitivity of baryon diffusion to critical effects. Its origins are analyzed and possible implications discussed.
The impact of the QCD critical point on the propagation of nonlinear waves has been studied. The effects have been investigated within the scope of second-order causal dissipative hydrodynamics by incorporating the critical point into the equation of state, and the scaling behaviour of transport coefficients and of thermodynamic response functions. Near the critical point, the nonlinear waves are found to be significantly damped which may result in the disappearance of the Mach cone effects of the away side jet. Such damping may lead to enhancement in the fluctuations of elliptic and higher flow coefficients. Therefore, the disappearance of Mach cone effects and the enhancement of fluctuations in flow harmonics in the event-by-event analysis may be considered as signals of the critical endpoint.
We study the collision energy dependence of (anti-)deuteron and (anti-)triton production in the most central Au+Au collisions at $sqrt{s_mathrm{NN}}=$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV, using the nucleon coalescence model. The needed phase-space distribution of nucleons at the kinetic freeze-out is generated from a new 3D hybrid dynamical model (texttt{iEBE-MUSIC}) by using a smooth crossover equation of state (EoS) without a QCD critical point. Our model calculations predict that the coalescence parameters of (anti-)deuteron ($B_2(d)$ and $B_2(bar{d})$) decrease monotonically as the collision energy increases, and the light nuclei yield ratio $N_t N_p/N_d^2$ remains approximately a constant with respect to the collision energy. These calculated observables fail to reproduce the non-monotonic behavior of the corresponding data from the STAR Collaboration. Without including any effects of the critical point in our model, our results serve as the baseline predictions for the yields of light nuclei in the search for the possible QCD critical points from the experimental beam energy scan of heavy ion collisions.
75 - Xin An , Marcus Bluhm , Lipei Du 2021
The Beam Energy Scan Theory (BEST) Collaboration was formed with the goal of providing a theoretical framework for analyzing data from the Beam Energy Scan (BES) program at the relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory. The physics goal of the BES program is the search for a conjectured QCD critical point as well as for manifestations of the chiral magnetic effect. We describe progress that has been made over the previous five years. This includes studies of the equation of state and equilibrium susceptibilities, the development of suitable initial state models, progress in constructing a hydrodynamic framework that includes fluctuations and anomalous transport effects, as well as the development of freezeout prescriptions and hadronic transport models. Finally, we address the challenge of integrating these components into a complete analysis framework. This document describes the collective effort of the BEST Collaboration and its collaborators around the world.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا