Generalized Grad-Shafranov equation for non-axisymmetric MHD equilibria


Abstract in English

The structure of static MHD equilibria that admit continuous families of Euclidean symmetries is well understood. Such field configurations are governed by the classical Grad-Shafranov equation, which is a single elliptic PDE in two space dimensions. By revealing a hidden symmetry, we show that in fact all smooth solutions of the equilibrium equations with non-vanishing pressure gradients away from the magnetic axis satisfy a generalization of the Grad-Shafranov equation. In contrast to solutions of the classical Grad-Shafranov equation, solutions of he generalized equation are not automatically equilibria, but instead only satisfy force balance averaged over the one-parameter hidden symmetry. We then explain how the generalized Grad-Shafranov equation can be used to reformulate the problem of finding exact three-dimensional smooth solutions of the equilibrium equations as finding an optimal volume-preserving symmetry.

Download