Do you want to publish a course? Click here

VLA and ALMA observations of the lensed radio-quiet quasar SDSS J0924+0219: a molecular structure in a 3 microJy radio source

73   0   0.0 ( 0 )
 Added by Shruti Badole
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Karl G. Jansky Very Large Array (VLA) and Atacama Large Millimetre Array (ALMA) observations of SDSS J0924+0219, a z = 1.524 radio-quiet lensed quasar with an intrinsic radio flux density of about 3 micro-Jy. The four lensed images are clearly detected in the radio continuum and the CO(5-4) line, whose centroid is at z = 1.5254 +/- 0.0001, with a marginal detection in the submillimetre continuum. The molecular gas displays ordered motion, in a structure approximately 1--2.5 kpc in physical extent, with typical velocities of 50-100 km/s. Our results are consistent with the radio emission being emitted from the same region, but not with a point source of radio emission. SDSS J0924+0219 shows an extreme anomaly in the flux ratios of the two merging images in the optical continuum and broad emission lines, suggesting the influence of microlensing by stars in the lensing galaxy. We find the flux ratio in the radio, submillimetre continuum and CO lines to be slightly greater than 1 but much less than that in the optical, which can be reproduced with a smooth galaxy mass model and an extended source. Our results, supported by a microlensing simulation, suggest that the most likely explanation for the optical flux anomaly is indeed microlensing.



rate research

Read More

424 - P. Hartley , N. Jackson , D. Sluse 2019
We present e-MERLIN and EVN observations which reveal unambiguous jet activity within radio quiet quasar HS~0810+2554. With an intrinsic flux density of 880~nJy, this is the faintest radio source ever imaged. The findings present new evidence against the idea that radio loud and radio quiet quasars are powered by different underlying radio emission mechanisms, showing instead that the same AGN mechanism can operate as the dominant source of radio emission even in the very lowest radio luminosity quasars. Thanks to strong gravitational lensing, our source is not only visible, but with VLBI is imaged to a scale of just 0.27~pc: the highest ever resolution image of a radio quiet quasar. Brightness temperatures of at least $8.4times 10^6$~K are associated with two highly compact components, and subsequent modelling of the lensed system has revealed that the components are linearly aligned on opposing sides of the optical quasar core, with the typical morphology of a compact symmetric object (CSO). Given that this source has been found to fall on the radio--FIR correlation, we suggest that the radio--FIR correlation cannot always be used to rule out AGN activity in favour of star-formation activity. The correlation -- or at least its scatter -- may conceal the coexistence of kinetic and radiative feedback modes in AGN. Modelling of the lensing mass itself points to a non-smooth mass distribution, hinting at the presence of dark matter substructure which has manifested as astrometric perturbations of the VLBI lensed images, posing no threat to the CDM paradigm.
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089A) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770A) monitoring spanning eleven years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5x10^13 and 10^15 cm, and we find an upper limit of 10^15 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7 GM_BH/c^2 for a 2.8x10^8 M_sol black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 10^14 cm < r_1/2,UV < 3x10^15 cm. Finally, the optical size is significantly larger, by 1.5*sigma, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.
We report the discovery of a radio quiet type 2 quasar (SDSS J165315.06+234943.0 nicknamed the Beetle at z=0.103) with unambiguous evidence for active galactic nucleus (AGN) radio induced feedback acting across a total extension of ~46 kpc and up to ~26 kpc from the AGN. To the best of our knowledge, this is the first radio quiet system where radio induced feedback has been securely identified at >>several kpc from the AGN. Turbulent gas is also found far from the radio axis, ~25 kpc in the perpendicular direction. We propose a scenario in which the radio structures have perforated the interstellar medium of the galaxy and escaped into the circumgalactic medium. While advancing, they have interacted with in-situ gas modifying its properties. Our results show that jets of modest power can be the dominant feedback mechanism acting across huge volumes in radio quiet systems, including highly accreting luminous AGN, where radiative mode feedback may be expected.
We present 1-2 GHz Very Large Array A-configuration continuum observations on the highest redshift quasar known to date, the $z=7.085$ quasar ULAS J112001.48+064124.3. The results show no radio continuum emission at the optical position of the quasar or its vicinity at a level of $geq 3sigma$ or $23.1 mu$Jy beam$^{-1}$. This $3sigma$ limit corresponds to a rest frame 1.4 GHz luminosity density limit of $L_{ u,1.4,GHz} < 1.76 times 10^{24}$ W Hz$^{-1}$ for a spectral index of $alpha=0$, and $L_{ u,1.4,GHz} < 1.42 times 10^{25}$ W Hz$^{-1}$ for a spectral index of $alpha=-1$. The rest-frame 1.4 GHz luminosity limits are $L_{rad} < 6.43 times 10^6 L_{odot}$ and $L_{rm rad} < 5.20 times 10^7 L_{odot}$ for $alpha=0$ and $alpha=-1$, respectively. The derived limits for the ratio of the rest frame 1.4 GHz luminosity density to the $B$-band optical luminosity density are $Rrlap{}_{1.4}^{*} < 0.53$ and $< 4.30$ for the above noted spectral indices, respectively. Given our upper limits on the radio continuum emission and the radio-to-optical luminosity ratio, we conclude that this quasar is radio-quiet and located at the low end of the radio quiet distribution of high redshift ($z gtrsim 6$) quasars.
We present multi-frequency (1-8 GHz) VLA data, combined with VIMOS IFU data and HST imaging, of a z=0.085 radio-quiet type 2 quasar (with L(1.4GHz)~5e23 W/Hz and L(AGN)~2e45 erg/s). Due to the morphology of its emission-line region, the target (J1430+1339) has been referred to as the Teacup AGN in the literature. We identify bubbles of radio emission that are extended ~10-12 kpc to both the east and west of the nucleus. The edge of the brighter eastern bubble is co-spatial with an arc of luminous ionized gas. We also show that the Teacup AGN hosts a compact radio structure, located ~0.8 kpc from the core position, at the base of the eastern bubble. This radio structure is co-spatial with an ionized outflow with an observed velocity of v=-740 km/s. This is likely to correspond to a jet, or possibly a quasar wind, interacting with the interstellar medium at this position. The large-scale radio bubbles appear to be inflated by the central AGN, which indicates that the AGN can also interact with the gas on >~10 kpc scales. Our study highlights that even when a quasar is formally radio-quiet the radio emission can be extremely effective for observing the effects of AGN feedback.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا