Quantum Algorithm for Approximating Maximum Independent Sets


Abstract in English

We present a quantum algorithm for approximating maximum independent sets of a graph based on quantum non-Abelian adiabatic mixing in the sub-Hilbert space of degenerate ground states, which generates quantum annealing in a secondary Hamiltonian. For both sparse and dense graphs, our quantum algorithm on average can find an independent set of size very close to $alpha(G)$, which is the size of the maximum independent set of a given graph $G$. Numerical results indicate that an $O(n^2)$ time complexity quantum algorithm is sufficient for finding an independent set of size $(1-epsilon)alpha(G)$. The best classical approximation algorithm can produce in polynomial time an independent set of size about half of $alpha(G)$.

Download