No Arabic abstract
We derive the optimal analytical quantum-state-transfer control solutions for two disparate quantum memory blocks. Employing the SLH formalism description of quantum network theory, we calculate the full quantum dynamics of system populations, which lead to the optimal solution for the highest quantum fidelity attainable. We show that, for the example where the mechanical modes of two optomechanical oscillators act as the quantum memory blocks, their optical modes and a waveguide channel connecting them can be used to achieve a quantum state transfer fidelity of 96% with realistic parameters using our derived optimal control solution. The effects of the intrinsic losses and the asymmetries in the physical memory parameters are discussed quantitatively.
It is shown that by switching a specific time-dependent interaction between a harmonic oscillator and a transmission line (a waveguide, an optical fiber, etc.) the quantum state of the oscillator can be transferred into that of another oscillator coupled to the distant other end of the line, with a fidelity that is independent of the initial state of both oscillators. For a transfer time $T$, the fidelity approaches 1 exponentially in $gamma T$ where $gamma$ is a characteristic damping rate. Hence, a good fidelity is achieved even for a transfer time of a few damping times. Some implementations are discussed.
Modular quantum computing architectures require fast and efficient distribution of quantum information through propagating signals. Here we report rapid, on-demand quantum state transfer between two remote superconducting cavity quantum memories through traveling microwave photons. We demonstrate a quantum communication channel by deterministic transfer of quantum bits with 76% fidelity. Heralding on errors induced by experimental imperfection can improve this to 87% with a success probability of 0.87. By partial transfer of a microwave photon, we generate remote entanglement at a rate that exceeds photon loss in either memory by more than a factor of three. We further show the transfer of quantum error correction code words that will allow deterministic mitigation of photon loss. These results pave the way for scaling superconducting quantum devices through modular quantum networks.
We introduce a figure of merit for a quantum memory which measures the preservation of entanglement between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian fluctuations in the Hamiltonian parameters, which for example model inhomogeneous broadening and storage time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise predominantly from Doppler broadening and motional dephasing.
An arbitrary qubit can be transmitted through a spin chain by perturbatively coupling both communicating parties to it. Those so-called weak-coupling models rely on effective Rabi oscillations between them, yielding nearly maximum fidelity while offering great resilience against disorder with the cost of having long transfer times. Considering this framework, here we address a 1D non-symmetric channel connecting two spins, one placed at each end of it. Given any pattern of nearest-neighbor coupling strengths, we obtain an analytical expression that accounts for the effective long-range interaction between them and study the interplay between transfer time and fidelity. Furthermore, we show that homogeneous channels provide the best speed-fidelity tradeoff.
We study quantum-state transfer in $XX$ spin-$1/2$ chains where both communicating spins are weakly coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modelled by long-range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the channel is able to perform an almost perfect quantum-state transfer in most of the samples even in the presence of significant amounts of disorder provided the degree of those correlations is strong enough. In that case, we also show that the lack of mirror symmetry does not affect much the likelihood of having high-quality outcomes. Our results advance a further step in designing robust devices for quantum communication protocols.