No Arabic abstract
We unravel the critical role of vibrational mode softening in single-molecule electronic devices at high bias. Our theoretical analysis is carried out with a minimal model for molecular junctions, with mode softening arising due to quadratic electron-vibration couplings, and by developing a mean-field approach. We discover that the negative sign of the quadratic electron-vibration coupling coefficient can realize at high voltage a sharp negative differential resistance (NDR) effect with a large peak-to-valley ratio. Calculated current-voltage characteristics, obtained based on ab initio parameters for a nitro-substituted oligo(phenylene ethynylene) junction, agree very well with measurements. Our results establish that vibrational mode softening is a crucial effect at high voltage, underlying NDR, a substantial diode effect, and the breakdown of current-carrying molecular junctions.
We have observed tunable negative differential resistance (NDR) in scanning tunneling spectroscopy measurements of a double layer of C60 molecules on a metallic surface. Using a simple model we show that the observed NDR behavior is explained by voltage-dependent changes in the tunneling barrier height.
We propose a very accurate computational scheme for the dynamics of a classical oscillator coupled to a molecular junction driven by a finite bias, including the finite mass effect. We focus on two minimal models for the molecular junction: Anderson-Holstein (AH) and two-site Su-Schrieffer-Heeger (SSH) models. As concerns the oscillator dynamics, we are able to recover a Langevin equation confirming what found by other authors with different approaches and assessing that quantum effects come from the electronic subsystem only. Solving numerically the stochastic equation, we study the position and velocity distribution probabilities of the oscillator and the electronic transport properties at arbitrary values of electron-oscillator interaction, gate and bias voltages. The range of validity of the adiabatic approximation is established in a systematic way by analyzing the behaviour of the kinetic energy of the oscillator. Due to the dynamical fluctuations, at intermediate bias voltages, the velocity distributions deviate from a gaussian shape and the average kinetic energy shows a non monotonic behaviour. In this same regime of parameters, the dynamical effects favour the conduction far from electronic resonances where small currents are observed in the infinite mass approximation. These effects are enhanced in the two-site SSH model due to the presence of the intermolecular hopping t. Remarkably, for sufficiently large hopping with respect to tunneling on the molecule, small interaction strengths and at intermediate bias (non gaussian regime), we point out a correspondence between the minima of the kinetic energy and the maxima of the dynamical conductance.
Nonlinear electrical properties, such as negative differential resistance (NDR), are essential in numerous electrical circuits, including memristors. Several physical origins have been proposed to lead to the NDR phenomena in semiconductor devices in the last more than half a century. Here, we report NDR behavior formation in randomly oriented graphene-like nanostructures up to 37 K and high on-current density up to 10^5 A/cm^2. Our modeling of the current-voltage characteristics, including the self-heating effects, suggests that strong temperature dependence of the low-bias resistance is responsible for the nonlinear electrical behavior. Our findings open opportunities for the practical realization of the on-demand NDR behavior in nanostructures of 2D and 3D material-based devices via heat management in the conducting films and the underlying substrates.
Introduction (2) Experimental background: Test beds (8) Theoretical approaches: A microscopic model(10) The electron-phonon coupling(14)Time and energy scales(15) Theoretical methods(19)Numerical calculations(28) Incoherent vs. coherent transport (28) Inelastic tunneling spectroscopy: Experimental background(31) Theoretical considerations:the weak coupling limit(36) Theoretical considerations: moderately strong coupling(41)Comparison of approximation schemes(48)Asymmetry in IETS(51)The origin of dips in IETS signals(53)Computational approaches (56) Effects of electron-electron(e-e)interactions (63) Noise (66) Non-linear conductance phenomena (73) Heating and heat conduction: General considerations(77) Heat generation(81) Heat conduction(85) Junction temperature(88) Current induced reactions (91) Summary and outlook (91)
We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 by constructing an analytical model of the voltage-current V(I) characteristic based on polaronic transport for Ohms Law and Newtons Law of Cooling, and fitting this model to experimental data. This threshold switching is the soft breakdown observed during electroforming of TiO2 and other transition-metal-oxide based memristors, as well as a precursor to ON or SET switching of unipolar memristors from their high to their low resistance states. The shape of the V(I) curve is a sensitive indicator of the nature of the polaronic conduction.