Do you want to publish a course? Click here

Approaches for handling sloping fluid-solid interfaces with the parabolic equation method

49   0   0.0 ( 0 )
 Added by Adith Ramamurti
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several methods for handling sloping fluid-solid interfaces with the elastic parabolic equation are tested. A single-scattering approach that is modified for the fluid-solid case is accurate for some problems but breaks down when the contrast across the interface is sufficiently large and when there is a Scholte wave. An approximate condition for conserving energy breaks down when a Scholte wave propagates along a sloping interface but otherwise performs well for a large class of problems involving gradual slopes, a wide range of sediment parameters, and ice cover. An approach based on treating part of the fluid layer as a solid with low shear speed handles Scholte waves and a wide range of sediment parameters accurately, but this approach needs further development. The variable rotated parabolic equation is not effective for problems involving frequent or continuous changes in slope, but it provides a high level of accuracy for most of the test cases, which have regions of constant slope. Approaches based on a coordinate mapping and on using a film of solid material with low shear speed on the rises of the stair steps that approximate a sloping interface are also tested and found to produce accurate results for some cases.



rate research

Read More

A lesser-known but powerful application of parabolic equation methods is to the target scattering problem. In this paper, we use noncanonically shaped objects to establish the limits of applicability of the traditional approach, and introduce wide-angle and multiple-scattering approaches to allow accurate treatment of concave scatterers. The PE calculations are benchmarked against finite-element results, with good agreement obtained for convex scatterers in the traditional approach, and for concave scatterers with our modified approach. We demonstrate that the PE-based method is significantly more computationally efficient than the finite-element method at higher frequencies where objects are several or more wavelengths long.
The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.
In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [28] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow problems into two single-medium cases by defining the ghost fluids status in terms of the predicted the interface status, which makes the material interface invisible. For the single medium flow case, we adapt between the linear upwind scheme and the WENO scheme automatically by identifying the regions of the extreme points for the reconstruction polynomial as same as the hybrid WENO scheme [50]. Instead of calculating their exact locations, we only need to know the regions of the extreme points based on the zero point existence theorem, which is simpler for implementation and saves computation time. Meanwhile, it still keeps the robustness and has high efficiency. Extensive numerical results for both one and two dimensional two-medium flow problems are performed to demonstrate the good performances of the proposed method.
A parabolic equation for the propagation of periodic internal waves over varying bottom topography is derived using the multiple-scale perturbation method. Some computational aspects of the numerical implementation are discussed. The results of numerical experiments on propagation of an incident plane wave over a circular-type shoal are presented in comparison with the analytical result, based on Born approximation.
Particle-in-Cell (PIC) methods are widely used computational tools for fluid and kinetic plasma modeling. While both the fluid and kinetic PIC approaches have been successfully used to target either kinetic or fluid simulations, little was done to combine fluid and kinetic particles under the same PIC framework. This work addresses this issue by proposing a new PIC method, PolyPIC, that uses polymorphic computational particles. In this numerical scheme, particles can be either kinetic or fluid, and fluid particles can become kinetic when necessary, e.g. particles undergoing a strong acceleration. We design and implement the PolyPIC method, and test it against the Landau damping of Langmuir and ion acoustic waves, two stream instability and sheath formation. We unify the fluid and kinetic PIC methods under one common framework comprising both fluid and kinetic particles, providing a tool for adaptive fluid-kinetic coupling in plasma simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا