No Arabic abstract
Since the first experimental observation of the phonon Hall effect (PHE) in 2005, its physical origin and theoretical explanation have been extensively investigated. While spin-orbit interactions are believed to play important roles under external magnetic fields, nonmagnetic effects are also possible. Here, we propose a mechanism of PHE which is induced by electric current in a nonequilibrium system through electron-phonon interactions. The influence of the drift electrons to the phonon degrees of freedom, as a correction to the Born-Oppenheimer approximation, is represented by an antisymmetric matrix which has the same form as in a typical phonon Hall model. We demonstrate the idea with a graphene-like hexagonal lattice having a finite phonon Hall conductivity under a driven electric current.
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-based models. Moreover, previous microscopic theory was found unable to explain large thermal Hall conductivity obtained by experiments in strontium titanate (STO). Therefore, as a first attempt to bridge this gap, we implement first-principles calculations to explore the PHE in real materials. Our work provides a new benchmark of the PHE in sodium chloride (NaCl) under a large external magnetic field. Moreover, we demonstrate our results in barium titanate (BTO), and discuss the results in STO in detail about their deviation from experiments. As a possible future direction, we further propose that the inner electronic Berry curvature plays an important role in the PHE in STO.
We report anisotropic magnetoresistance in Pt|Y3Fe5O12 bilayers. In spite of Y3Fe5O12 being a very good electrical insulator, the resistance of the Pt layer reflects its magnetization direction. The effect persists even when a Cu layer is inserted between Pt and Y3Fe5O12, excluding the contribution of induced equilibrium magnetization at the interface. Instead, we show that the effect originates from concerted actions of the direct and inverse spin Hall effects and therefore call it spin Hall magnetoresistance.
Quantum anomalous Hall effect (QAHE) has been experimentally observed in magnetically doped topological insulators. However, ultra-low temperature (usually below 300 mK), which is mainly attributed to inhomogeneous magnetic doping, becomes a daunting challenge for potential applications. Here, a textit{nonmagnetic}-doping strategy is proposed to produce ferromagnetism and realize QAHE in topological insulators. We numerically demonstrated that magnetic moments can be induced by nitrogen or carbon substitution in Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$, but only nitrogen-doped Sb$_2$Te$_3$ exhibits long-range ferromagnetism and preserve large bulk band gap. We further show that its corresponding thin-film can harbor QAHE at temperatures of 17-29 Kelvin, which is two orders of magnitude higher than the typical temperatures in similar systems. Our proposed textit{nonmagnetic} doping scheme may shed new light in experimental realization of high-temperature QAHE in topological insulators.
Precise estimation of spin Hall angle as well as successful maximization of spin-orbit torque (SOT) form a basis of electronic control of magnetic properties with spintronic functionality. Until now, current-nonlinear Hall effect, or second harmonic Hall voltage has been utilized as one of the methods for estimating spin Hall angle, which is attributed to the magnetization oscillation by SOT. Here, we argue the second harmonic Hall voltage in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$. From the angular, temperature and magnetic field dependence, it is unambiguously shown that the large second harmonic Hall voltage in TI heterostructures is governed not by SOT but mainly by asymmetric magnon scattering mechanism without magnetization oscillation. Thus, this method does not allow an accurate estimation of spin Hall angle when magnons largely contribute to electron scattering. Instead, the SOT contribution in a TI heterostructure is exemplified by current pulse induced non-volatile magnetization switching, which is realized with a current density of $sim 2.5 times 10^{10} mathrm{A/m}^2$, showing its potential as spintronic materials.
Collective motions of electrons in solids are often conveniently described as the movements of quasiparticles. Here we show that these quasiparticles can be hierarchical. Examples are valley electrons, which move in hyperorbits within a honeycomb lattice and forms a valley pseudospin, or the self-rotation of the wave-packet. We demonstrate that twist can induce higher level motions of valley electrons around the moire superlattice of bilayer systems. Such larger scale collective movement of the valley electron, can be regarded as the self-rotation (spin) of a higher-level quasiparticle, or what we call super-valley electron. This quasiparticle, in principle, may have mesoscopic size as the moire supercell can be very large. It could result in fascinating properties like topological and chiral transport, superfluid, etc., even though these properties are absent in the pristine untwisted system. Using twisted antiferromagnetically coupled bilayer with honeycomb lattice as example, we find that there forms a Haldane-like superlattice with periodically staggered magnetic flux and the system could demonstrate quantum super-valley Hall effect. Further analyses reveal that the super-valley electron possesses opposite chirality when projected onto the top and bottom layer, and can be described as two components (magnetic monopoles) of Dirac fermion entangled in real-space, or a giant electron. Our theory opens a new way to understand the collective motions of electrons in solid.