Nash Equilibrium Seeking under Directed Graphs


Abstract in English

In this paper, we aim to develop distributed continuous-time algorithms under directed graphs to seek the Nash equilibrium of a noncooperative game. Motivated by the existing consensus-based designs in Gadjov and Pavel (2019), we present a distributed algorithm with a proportional gain for weight-balanced directed graphs. By further embedding a distributed estimator of the left eigenvector associated with zero eigenvalue of the graph Laplacian, we extend it to the case with arbitrary strongly connected directed graphs having possible unbalanced weights. In both cases, the Nash equilibrium is proven to be exactly reached with an exponential convergence rate.

Download