No Arabic abstract
We describe a high-speed interferometric method, using multiple angles of incidence and multiple wavelengths, to measure the absolute thickness, tilt, the local angle between the surfaces, and the refractive index of a fluctuating transparent wedge. The method is well suited for biological, fluid and industrial applications.
Increasing the refractive index available for optical and nanophotonic systems opens new vistas for design: for applications ranging from broadband metalenses to ultrathin photovoltaics to high-quality-factor resonators, higher index directly leads to better devices with greater functionality. Although standard transparent materials have been limited to refractive indices smaller than 3 in the visible, recent metamaterials designs have achieved refractive indices above 5, accompanied by high losses, and near the phase transition of a ferroelectric perovskite a broadband index above 26 has been claimed. In this work, we derive fundamental limits to the refractive index of any material, given only the underlying electron density and either the maximum allowable dispersion or the minimum bandwidth of interest. The Kramers--Kronig relations provide a representation for any passive (and thereby causal) material, and a well-known sum rule constrains the possible distribution of oscillator strengths. In the realm of small to modest dispersion, our bounds are closely approached and not surpassed by a wide range of natural materials, showing that nature has already nearly reached a Pareto frontier for refractive index and dispersion. Surprisingly, our bound shows a cube-root dependence on electron density, meaning that a refractive index of 26 over all visible frequencies is likely impossible. Conversely, for narrow-bandwidth applications, nature does not provide the highly dispersive, high-index materials that our bounds suggest should be possible. We use the theory of composites to identify metal-based metamaterials that can exhibit small losses and sizeable increases in refractive index over the current best materials.
A simple user-friendly software named PRISA has been developed to determine optical constants (refractive index and extinction co-efficient), dispersion parameters (oscillator energy and dispersion energy), absorption co-efficient, band gap and thickness of semiconductor and dielectric thin films from their measured transmission spectrum, only. The thickness, refractive index, and extinction co-efficient of the films have been derived using Envelope method proposed by Swanepoel. The absorption co-efficient in the strong absorption region is calculated using the method proposed by Connel and Lewis. Subsequently, both direct and indirect bandgap of the films is estimated from the absorption co-efficient spectrum using Tauc plot. The codes for the software are written in Python and the graphical user interface is programmed with tkinter package of Python. It provides convenient input and output of the measured and derived data. The software has a feature to retrieve transmission spectrum using the derived parameters in order to check their reliability. The performance of the software is verified by analyzing numerically generated transmission spectra of a-Si:H amorphous semiconductor thin films, and experimentally measured transmission spectra of electron beam evaporated HfO2 dielectric thin films as examples. PRISA is found to be much simpler and accurate as compared to the other freely available softwares. To help other researchers working on thin films, the software is made freely available at https://www.shuvendujena.tk/download.
In recent years a very exciting and intense activity has been devoted to the understanding and construction of materials that enjoy exotic optical properties, such as a negative refractive index. Motivated by these experimental and theoretical developments, we use the string-inspired idea of holography to study the electromagnetic response of a certain class of media: strongly coupled relativistic systems that admit a dual gravitational description. Our results indicate that this type of media generally have a negative refractive index. Moreover we observe that a negative refractive index could be a common feature of relativistic hydrodynamic systems at low frequencies.
By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third order nonlinear response of graphene at telecom wavelength, and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, $n_2 = - 1.1times 10^{-13} m^2/W$. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature, and to discuss the discrepancies, taking into account parameters such as doping.
Sub-wavelength diffractive optics, commonly known as metasurfaces, have recently garnered significant attention for their ability to create ultra-thin flat lenses with extremely short focal lengths. Several materials with different refractive indices have been used to create metasurface lenses (metalenses). In this paper, we analyze the role of material refractive indices on the performance of these metalenses. We employ both forward and inverse design methodologies to perform our analysis. We found that, while high refractive index materials allow for extreme reduction of the focal length, for moderate focal lengths and numerical aperture (<0.6), there is no appreciable difference in focal spot-size and focusing efficiency for metalenses made of different materials with refractive indices ranging between n= 1.25 to n=3.5.