On the rational motivic homotopy category


Abstract in English

We study the structure of the rational motivic stable homotopy category over general base schemes. Our first class of results concerns the six operations: we prove absolute purity, stability of constructible objects, and Grothendieck-Verdier duality for SH_Q. Next, we prove that SH_Q is canonically SL-oriented; we compare SH_Q with the category of rational Milnor-Witt motives; and we relate the rational bivariant A^1-theory to Chow-Witt groups. These results are derived from analogous statements for the minus part of SH[1/2].

Download