Polynomially filtered exact diagonalization method (POLFED) for large sparse matrices is introduced. The algorithm finds an optimal basis of a subspace spanned by eigenvectors with eigenvalues close to a specified energy target by a spectral transformation using a high order polynomial of the matrix. The memory requirements scale better with system size than in the state-of-the-art shift-invert approach. The potential of POLFED is demonstrated examining many-body localization transition in 1D interacting quantum spin-1/2 chains. We investigate the disorder strength and system size scaling of Thouless time. System size dependence of bipartite entanglement entropy and of the gap ratio highlights the importance of finite-size effects in the system. We discuss possible scenarios regarding the many-body localization transition obtaining estimates for the critical disorder strength.
We theoretically study correlations present deep in the spectrum of many-body-localized systems. An exact analytical expression for the spectral form factor of Poisson spectra can be obtained and is shown to agree well with numerical results on two models exhibiting many-body-localization: a disordered quantum spin chain and a phenomenological $l$-bit model based on the existence of local integrals of motion. We also identify a universal regime that is insensitive to the global density of states as well as spectral edge effects.
Spectral statistics of disordered systems encode Thouless and Heisenberg time scales whose ratio determines whether the system is chaotic or localized. Identifying similarities between system size and disorder strength scaling of Thouless time for disordered quantum many-body systems with results for 3D and 5D Anderson models, we argue that the two-parameter scaling breaks down in the vicinity of the transition to the localized phase signalling subdiffusive dynamics.
We construct a family of many-body wave functions to study the many-body localization phase transition. The wave functions have a Rokhsar-Kivelson form, in which the weight for the configurations are chosen from the Gibbs weights of a classical spin glass model, known as the Random Energy Model, multiplied by a random sign structure to represent a highly excited state. These wave functions show a phase transition into an MBL phase. In addition, we see three regimes of entanglement scaling with subsystem size: scaling with entanglement corresponding to an infinite temperature thermal phase, constant scaling, and a sub-extensive scaling between these limits. Near the phase transition point, the fluctuations of the Renyi entropies are non-Gaussian. We find that Renyi entropies with different Renyi index transition into the MBL phase at different points and have different scaling behavior, suggesting a multifractal behavior.
Recent developments in matrix-product-state (MPS) investigations of many-body localization (MBL) are reviewed, with a discussion of benefits and limitations of the method. This approach allows one to explore the physics around the MBL transition in systems much larger than those accessible to exact diagonalization. System sizes and length scales that can be controllably accessed by the MPS approach are comparable to those studied in state-of-the-art experiments. Results for 1D, quasi-1D, and 2D random systems, as well as 1D quasi-periodic systems are presented. On time scales explored (up to $t approx 300$ in units set by the hopping amplitude), a slow, subdiffusive transport in a rather broad disorder range on the ergodic side of the MBL transition is found. For 1D random spin chains, which serve as a standard model of the MBL transition, the MPS study demonstrates a substantial drift of the critical point $W_c(L)$ with the system size $L$: while for $L approx 20$ we find $W_c approx 4$, as also given by exact diagonalization, the MPS results for $L = 50$--100 provide evidence that the critical disorder saturates, in the large-$L$ limit, at $W_c approx 5.5$. For quasi-periodic systems, these finite-size effects are much weaker, which suggests that they can be largely attributed to rare events. For quasi-1D ($dtimes L$, with $d ll L$) and 2D ($Ltimes L$) random systems, the MPS data demonstrate an unbounded growth of $W_c$ in the limit of large $d$ and $L$, in agreement with analytical predictions based on the rare-event avalanche theory.
We theoretically study transport properties in one-dimensional interacting quasiperiodic systems at infinite temperature. We compare and contrast the dynamical transport properties across the many-body localization (MBL) transition in quasiperiodic and random models. Using exact diagonalization we compute the optical conductivity $sigma(omega)$ and the return probability $R(tau)$ and study their average low-frequency and long-time power-law behavior, respectively. We show that the low-energy transport dynamics is markedly distinct in both the thermal and MBL phases in quasiperiodic and random models and find that the diffusive and MBL regimes of the quasiperiodic model are more robust than those in the random system. Using the distribution of the DC conductivity, we quantify the contribution of sample-to-sample and state-to-state fluctuations of $sigma(omega)$ across the MBL transition. We find that the activated dynamical scaling ansatz works poorly in the quasiperiodic model but holds in the random model with an estimated activation exponent $psiapprox 0.9$. We argue that near the MBL transition in quasiperiodic systems, critical eigenstates give rise to a subdiffusive crossover regime on finite-size systems.