Do you want to publish a course? Click here

The combined incompressible quasineutral limit of the stochastic Navier-Stokes-Poisson system

51   0   0.0 ( 0 )
 Added by Prince Romeo Mensah
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper deals with the combined incompressible quasineutral limit of the weak martingale solution of the compressible Navier-Stokes-Poisson system perturbed by a stochastic forcing term in the whole space. In the framework of ill-prepared initial data, we show the convergence in law to a weak martingale solution of a stochastic incompressible Navier-Stokes system. The result holds true for any arbitrary nonlinear forcing term with suitable growth. The proof is based on the analysis of acoustic waves but since we are dealing with a stochastic partial differential equation, the existing deterministic tools for treating this second-order equation breakdown. Although this might seem as a minor modification, to handle the acoustic waves in the stochastic compressible Navier-Stokes system, we produce suitable dispersive estimate for first-order system of equations, which are an added value to the existing theory. As a by-product of this dispersive estimate analysis, we are also able to prove a convergence result in the case of the zero-electron-mass limit for a stochastic fluid dynamical plasma model.



rate research

Read More

In this paper, the global strong axisymmetric solutions for the inhomogeneous incompressible Navier-Stokes system are established in the exterior of a cylinder subject to the Dirichlet boundary conditions. Moreover, the vacuum is allowed in these solutions. One of the key ingredients of the analysis is to obtain the ${L^{2}(s,T;L^{infty}(Omega))}$ bound for the velocity field, where the axisymmetry of the solutions plays an important role.
66 - Giovanni Leoni , Ian Tice 2019
In this paper we study a finite-depth layer of viscous incompressible fluid in dimension $n ge 2$, modeled by the Navier-Stokes equations. The fluid is assumed to be bounded below by a flat rigid surface and above by a free, moving interface. A uniform gravitational field acts perpendicularly to the flat surface, and we consider the cases with and without surface tension acting on the free interface. In addition to these gravity-capillary effects, we allow for a second force field in the bulk and an external stress tensor on the free interface, both of which are posited to be in traveling wave form, i.e. time-independent when viewed in a coordinate system moving at a constant velocity parallel to the rigid lower boundary. We prove that, with surface tension in dimension $n ge 2$ and without surface tension in dimension $n=2$, for every nontrivial traveling velocity there exists a nonempty open set of force and stress data that give rise to traveling wave solutions. While the existence of inviscid traveling waves is well known, to the best of our knowledge this is the first construction of viscous traveling wave solutions. Our proof involves a number of novel analytic ingredients, including: the study of an over-determined Stokes problem and its under-determined adjoint, a delicate asymptotic development of the symbol for a normal-stress to normal-Dirichlet map defined via the Stokes operator, a new scale of specialized anisotropic Sobolev spaces, and the study of a pseudodifferential operator that synthesizes the various operators acting on the free surface functions.
We show that in bounded domains with no-slip boundary conditions, the Navier-Stokes pressure can be determined in a such way that it is strictly dominated by viscosity. As a consequence, in a general domain we can treat the Navier-Stokes equations as a perturbed vector diffusion equation, instead of as a perturbed Stokes system. We illustrate the advantages of this view in a number of ways. In particular, we provide simple proofs of (i) local-in-time existence and uniqueness of strong solutions for an unconstrained formulation of the Navier-Stokes equations, and (ii) the unconditional stability and convergence of difference schemes that are implicit only in viscosity and explicit in both pressure and convection terms, requiring no solution of stationary Stokes systems or inf-sup conditions.
IIn the paper, we consider the inviscid, incompressible and semiclassical limits limits of the barotropic quantum Navier-Stokes equations of compressible flows in a periodic domain. We show that the limit solutions satisfy the incompressible Euler system based on the relative entropy inequality and on the detailed analysis for general initial data. The rate of convergence is estimated in terms of the Mach number.
137 - Ting Zhang , Daoyuan Fang 2008
In this paper, we consider a global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations (textit{ANS}). In order to do so, we first introduce the scaling invariant Besov-Sobolev type spaces, $B^{-1+frac{2}{p},{1/2}}_{p}$ and $B^{-1+frac{2}{p},{1/2}}_{p}(T)$, $pgeq2$. Then, we prove the global wellposedness for (textit{ANS}) provided the initial data are sufficient small compared to the horizontal viscosity in some suitable sense, which is stronger than $B^{-1+frac{2}{p},{1/2}}_{p}$ norm. In particular, our results imply the global wellposedness of (textit{ANS}) with high oscillatory initial data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا