No Arabic abstract
We consider the scattering of dark matter particles from superfluid liquid $^4$He, which has been proposed as a target for their direct detection. Focusing on dark matter masses below ~1 MeV, we demonstrate from sum-rule arguments the importance of the production of single phonons with energies $omega lesssim 1$ meV. We show further that the anomalous dispersion of phonons in liquid $^4$He at low pressures [i.e., $d^2omega(q)/dq^2>0$, where $q$ and $omega(q)$ are the phonon momentum and energy] has the important consequence that a single phonon will decay over a relatively short distance into a shower of lower energy phonons centered on the direction of the original phonon. Thus the experimental challenge in this regime is to detect a shower of low energy phonons, not just a single phonon. Additional information from the distribution of phonons in such a shower could enhance the determination of the dark matter mass.
We consider searches for the inelastic scattering of low-mass dark matter at direct detection experiments, using the Migdal effect. We find that there are degeneracies between the dark matter mass and the mass splitting that are difficult to break. Using XENON1T data we set bounds on a previously unexplored region of the inelastic dark matter parameter space. For the case of exothermic scattering, we find that the Migdal effect allows xenon-based detectors to have sensitivity to dark matter with $mathcal{O}$(MeV) mass, far beyond what can be obtained with nuclear recoils.
High-resolution neutron resonance spin-echo measurements of superfluid 4He show that the roton energy does not have the same temperature dependence as the inverse lifetime. Diagrammatic analysis attributes this to the interaction of rotons with thermally excited phonons via both four- and three-particle processes, the latter being allowed by the broken gauge symmetry of the Bose condensate. The distinct temperature dependence of the roton energy at low temperatures suggests that the net roton-phonon interaction is repulsive.
Axion-like particles are a broad class of dark matter candidates which are expected to behave as a coherent, classical field with a weak coupling to photons. Research into the detectability of these particles with laser interferometers has recently revealed a number of promising experimental designs. Inspired by these ideas, we propose the Axion Detection with Birefringent Cavities (ADBC) experiment, a new axion interferometry concept using a cavity that exhibits birefringence between its two, linearly polarized laser eigenmodes. This experimental concept overcomes several limitations of the designs currently in the literature, and can be practically realized in the form of a simple bowtie cavity with tunable mirror angles. Our design thereby increases the sensitivity to the axion-photon coupling over a wide range of axion masses.
We study the ability of the Hyper-Kamiokande (HyperK) experiment, currently under construction, to constrain a neutrino signal produced via the annihilation of dark matter captured in the Sun. We simulate upward stopping and upward through-going muon events at HyperK, using Super-Kamiokande (SuperK) atmospheric neutrino results for validation, together with fully and partially contained events. Considering the annihilation of dark matter to various standard model final states, we determined the HyperK sensitivity to the dark matter spin-dependent scattering cross-section. We find that HyperK will improve upon current SuperK limits by a factor of 2-3, with a further improvement in sensitivity possible if systematic errors can be decreased relative to SuperK.
Collective excitations in condensed matter systems, such as phonons and magnons, have recently been proposed as novel detection channels for light dark matter. We show that excitation of i) optical phonon polaritons in polar materials in an ${mathcal O}$(1 T) magnetic field (via the axion-photon coupling), and ii) gapped magnons in magnetically ordered materials (via the axion wind coupling to the electron spin), can cover the difficult-to-reach ${mathcal O}$(1-100) meV mass window of QCD axion dark matter with less than a kilogram-year exposure. Finding materials with a large number of optical phonon or magnon modes that can couple to the axion field is crucial, suggesting a program to search for a range of materials with different resonant energies and excitation selection rules; we outline the rules and discuss a few candidate targets, leaving a more exhaustive search for future work. Ongoing development of single photon, phonon and magnon detectors will provide the key for experimentally realizing the ideas presented here.