Do you want to publish a course? Click here

Fragmented monopole crystal, dimer entropy and Coulomb interactions in Dy$_2$Ir$_2$O$_7$

88   0   0.0 ( 0 )
 Added by Elsa Lhotel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron scattering, specific heat and magnetisation measurements on both powders and single crystals reveal that Dy$_2$Ir$_2$O$_7$ realizes the fragmented monopole crystal state in which antiferromagnetic order and a Coulomb phase spin liquid co-inhabit. The measured residual entropy is that of a hard core dimer liquid, as predicted. Inclusion of Coulomb interactions allows for a quantitative description of both the thermodynamic data and the magnetisation dynamics, with the energy scale given by deconfined defects in the emergent ionic crystal. Our data reveal low energy excitations, as well as a large distribution of energy barriers down to low temperatures, while the magnetic response to an applied field suggests that domain wall pinning is important; results that call for further theoretical modelling.



rate research

Read More

Determining the fate of the Pauling entropy in the classical spin ice material Dy$_2$Ti$_2$O$_7$ with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice - the dipolar spin ice model - predicts an ordering transition at $Tapprox 0.15$ K, but recent experiments by Pomaranski $et al.$ suggest an entropy recovery over long time scales at temperatures as high as $0.5$ K, much too high to be compatible with theory. Using neutron scattering and specific heat measurements at low temperatures and with long time scales ($0.35$ K$/10^6$ s and $0.5$ K$/10^5$ s respectively) on several isotopically enriched samples we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Further, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez $et al.$ are, after all, essentially correct: the short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions.
We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an all in - all out antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above $T_{rm N} approx 300$ mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near $T_{rm N}$ do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the all in - all out order superimposed on a Coulomb phase.
We report a study of the thermal conductivity $kappa$ of the spin-ice material Dy$_2$Ti$_2$O$_7$. From the anisotropic magnetic-field dependence of kappa$ and by additional measurements on the phononic reference compounds Y$_2$Ti$_2$O$_7$ and DyYTi$_2$O$_7$, we are able to separate the phononic and the magnetic contributions to the total heat transport, i.e. $kappa_{ph}$ and $kappa_{mag}$, respectively, which both depend on the magnetic field. The field dependent $kappa_{ph}$ arises from lattice distortions due to magnetic-field induced torques on the non-collinear magnetic moments of the Dy ions. For $kappa_{mag}$, we observe a highly anisotropic magnetic-field dependence, which correlates with the corresponding magnetization data reflecting the different magnetic-field induced spin-ice ground states. The magnitude of $kappa_{mag}$ increases with the degree of the ground-state degeneracy. This anisotropic field dependence as well as various hysteresis effects suggest that $kappa_{mag}$ is essentially determined by the mobility of the magnetic monopole excitations in spin ice.
The influence of a staggered molecular field in frustrated rare-earth pyrochlores, produced via the magnetic iridium occupying the transition metal site, can generate exotic ground states, such as the fragmentation of the magnetization in the Ho compound. At variance with the Ising Ho$^{3+}$ moment, we focus on the behavior of the quasi isotropic magnetic moment of the Gd$^{3+}$ ion at the rare-earth site. By means of macroscopic measurements and neutron scattering, we find a complex situation where different components of the magnetic moment contribute to two antiferromagnetic non-collinear arrangements: a high temperature all in - all out order induced by the Ir molecular field, and Palmer and Chalker correlations that tend to order at much lower temperatures. This is enabled by the anisotropic nature of the Gd-Gd interactions and requires a weak easy-plane anisotropy of the Gd$^{3+}$ moment due to the mixing of the ground state with multiplets of higher spectral terms.
The elementary excitations of the spin-ice materials Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$ in zero field can be described as independent magnetic monopoles. We investigate the influence of these exotic excitations on the heat transport by measuring the magnetic-field dependent thermal conductivity $kappa $. Additional measurements on the highly dilute reference compounds HoYTi$_2$O$_7$ and DyYTi$_2$O$_7$ enable us to separate $kappa $ into a sum of phononic ($kappa_{ph}$) and magnetic ($kappa_{mag}$) contributions. For both spin-ice materials, we derive significant zero-field contributions $kappa_{mag}$, which are rapidly suppressed in finite magnetic fields. Moreover, $kappa_{mag}$ sensitively depends on the scattering of phonons by magnetic excitations, which is rather different for the Ho- and the Dy-based materials and, as a further consequence, the respective magnetic-field dependent changes $kappa_{ph}(B)$ are even of opposite signs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا