Do you want to publish a course? Click here

Conformer: Convolution-augmented Transformer for Speech Recognition

136   0   0.0 ( 0 )
 Added by Anmol Gulati
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR), outperforming Recurrent neural networks (RNNs). Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. In this work, we achieve the best of both worlds by studying how to combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. To this regard, we propose the convolution-augmented transformer for speech recognition, named Conformer. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies. On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother. We also observe competitive performance of 2.7%/6.3% with a small model of only 10M parameters.



rate research

Read More

Multi-channel inputs offer several advantages over single-channel, to improve the robustness of on-device speech recognition systems. Recent work on multi-channel transformer, has proposed a way to incorporate such inputs into end-to-end ASR for improved accuracy. However, this approach is characterized by a high computational complexity, which prevents it from being deployed in on-device systems. In this paper, we present a novel speech recognition model, Multi-Channel Transformer Transducer (MCTT), which features end-to-end multi-channel training, low computation cost, and low latency so that it is suitable for streaming decoding in on-device speech recognition. In a far-field in-house dataset, our MCTT outperforms stagewise multi-channel models with transformer-transducer up to 6.01% relative WER improvement (WERR). In addition, MCTT outperforms the multi-channel transformer up to 11.62% WERR, and is 15.8 times faster in terms of inference speed. We further show that we can improve the computational cost of MCTT by constraining the future and previous context in attention computations.
Recently very deep transformers have outperformed conventional bi-directional long short-term memory networks by a large margin in speech recognition. However, to put it into production usage, inference computation cost is still a serious concern in real scenarios. In this paper, we study two different non-autoregressive transformer structure for automatic speech recognition (ASR): A-CMLM and A-FMLM. During training, for both frameworks, input tokens fed to the decoder are randomly replaced by special mask tokens. The network is required to predict the tokens corresponding to those mask tokens by taking both unmasked context and input speech into consideration. During inference, we start from all mask tokens and the network iteratively predicts missing tokens based on partial results. We show that this framework can support different decoding strategies, including traditional left-to-right. A new decoding strategy is proposed as an example, which starts from the easiest predictions to the most difficult ones. Results on Mandarin (Aishell) and Japanese (CSJ) ASR benchmarks show the possibility to train such a non-autoregressive network for ASR. Especially in Aishell, the proposed method outperformed the Kaldi ASR system and it matches the performance of the state-of-the-art autoregressive transformer with 7x speedup. Pretrained models and code will be made available after publication.
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral and spatial information collected from different microphones are integrated using attention layers. Our multi-channel transformer network mainly consists of three parts: channel-wise self attention layers (CSA), cross-channel attention layers (CCA), and multi-channel encoder-decoder attention layers (EDA). The CSA and CCA layers encode the contextual relationship within and between channels and across time, respectively. The channel-attended outputs from CSA and CCA are then fed into the EDA layers to help decode the next token given the preceding ones. The experiments show that in a far-field in-house dataset, our method outperforms the baseline single-channel transformer, as well as the super-directive and neural beamformers cascaded with the transformers.
Non-autoregressive transformer models have achieved extremely fast inference speed and comparable performance with autoregressive sequence-to-sequence models in neural machine translation. Most of the non-autoregressive transformers decode the target sequence from a predefined-length mask sequence. If the predefined length is too long, it will cause a lot of redundant calculations. If the predefined length is shorter than the length of the target sequence, it will hurt the performance of the model. To address this problem and improve the inference speed, we propose a spike-triggered non-autoregressive transformer model for end-to-end speech recognition, which introduces a CTC module to predict the length of the target sequence and accelerate the convergence. All the experiments are conducted on a public Chinese mandarin dataset AISHELL-1. The results show that the proposed model can accurately predict the length of the target sequence and achieve a competitive performance with the advanced transformers. Whats more, the model even achieves a real-time factor of 0.0056, which exceeds all mainstream speech recognition models.
The Transformer self-attention network has recently shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire input sequence is required to compute self-attention. We have proposed a block processing method for the Transformer encoder by introducing a context-aware inheritance mechanism. An additional context embedding vector handed over from the previously processed block helps to encode not only local acoustic information but also global linguistic, channel, and speaker attributes. In this paper, we extend it towards an entire online E2E ASR system by introducing an online decoding process inspired by monotonic chunkwise attention (MoChA) into the Transformer decoder. Our novel MoChA training and inference algorithms exploit the unique properties of Transformer, whose attentions are not always monotonic or peaky, and have multiple heads and residual connections of the decoder layers. Evaluations of the Wall Street Journal (WSJ) and AISHELL-1 show that our proposed online Transformer decoder outperforms conventional chunkwise approaches.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا