No Arabic abstract
Exact budget equations for the second-order structure function tensor $langle delta u_i delta u_j rangle$ are used to study the two-point statistics of velocity fluctuations in inhomogeneous turbulence. The Anisotropic Generalized Kolmogorov Equations (AGKE) describe the production, transport, redistribution and dissipation of every Reynolds stress component occurring simultaneously among different scales and in space, i.e. along directions of statistical inhomogeneity. The AGKE are effective to study the inter-component and multi-scale processes of turbulence. In contrast to more classic approaches, such as those based on the spectral decomposition of the velocity field, the AGKE provide a natural definition of scales in the inhomogeneous directions, and describe fluxes across such scales too. Compared to the Generalized Kolmogorov Equation, which is recovered as their half trace, the AGKE can describe inter-component energy transfers occurring via the pressure-strain term and contain also budget equations for the off-diagonal components of $langle delta u_i delta u_j rangle$. The non-trivial physical interpretation of the AGKE terms is demonstrated with three examples. First, the near-wall cycle of a turbulent channel flow at $Re_tau=200$ is considered. The off-diagonal component $langle -delta u delta v rangle$, which can not be interpreted in terms of scale energy, is discussed in detail. Wall-normal scales in the outer turbulence cycle are then discussed by applying the AGKE to channel flows at $Re_tau=500$ and $1000$. In a third example, the AGKE are computed for a separating and reattaching flow. The process of spanwise-vortex formation in the reverse boundary layer within the separation bubble is discussed for the first time.
Recent numerical simulations showed that the mean flow is generated in inhomogeneous turbulence of an incompressible fluid accompanied with helicity and system rotation. In order to investigate the mechanism of this phenomenon, we carry out a numerical simulation of inhomogeneous turbulence in a rotating system. In the simulation, an external force is applied to inject inhomogeneous turbulent helicity and the rotation axis is taken to be perpendicular to the inhomogeneous direction. No mean velocity is set in the initial condition of the simulation. The simulation results show that only in the case with both the helical forcing and the system rotation, the mean flow directed to the rotation axis is generated and sustained. We investigate the physical origin of this flow-generation phenomenon by considering the budget of the Reynolds-stress transport equation. It is found that the pressure diffusion term has a large contribution in the Reynolds stress equation and supports the generated mean flow. It is shown that a model expression for the pressure diffusion can be expressed by the turbulent helicity gradient coupled with the angular velocity of the system rotation. This implies that inhomogeneous helicity can play a significant role for the generation of the large-scale velocity distribution in incompressible turbulent flows.
Lagrangian properties obtained from a Particle Tracking Velocimetry experiment in a turbulent flow at intermediate Reynolds number are presented. Accurate sampling of particle trajectories is essential in order to obtain the Lagrangian structure functions and to measure intermittency at small temporal scales. The finiteness of the measurement volume can bias the results significantly. We present a robust way to overcome this obstacle. Despite no fully developed inertial range we observe strong intermittency at the scale of dissipation. The multifractal model is only partially able to reproduce the results.
We discuss a mean-field theory of generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale nonuniform flow is produced due to ether a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
We accomplish two major tasks. First, we show that the turbulent motion at large scales obeys Gaussian statistics in the interval 0 < Rlambda < 8.8, where Rlambda is the microscale Reynolds number, and that the Gaussian flow breaks down to yield place to anomalous scaling at the universal Reynolds number bounding the inequality above. In the inertial range of turbulence that emerges following the breakdown, the effective Reynolds number based on the turbulent viscosity, Rlambda* assumes this same constant value of about 9. This scenario works also for the emergence of turbulence from an initially non-turbulent state. Second, we derive expressions for the anomalous scaling exponents of structure functions and moments of spatial derivatives, by analyzing the Navier-Stokes equations in the form developed by Hopf. We present a novel procedure to close the Hopf equation, resulting in expressions for zetan in the entire range of allowable moment-order, n, and demonstrate that accounting for the temporal dynamics changes the scaling from normal to anomalous. For large n, the theory predicts the saturation of zetan with n, leading to two inferences: (a) the smallest length scale etan = LRe-1 << LRe-3/4, where Re is the large-scale Reynolds number, and (b) velocity excursions across even the smallest length scales can sometimes be as large as the large scale velocity itself. Theoretical predictions for each of these aspects are shown to be in quantitative agreement with available experimental and numerical data.
Using exact relations between velocity structure functions (Hill, Hill and Boratav, and Yakhot) and neglecting pressure contributions in a first approximation, we obtain a closed system and derive simple order-dependent rescaling relationships between longitudinal and transverse structure functions. By means of numerical data with turbulent Reynolds numbers ranging from $Re_lambda=320$ to $Re_lambda=730$, we establish a clear correspondence between their respective scaling range, while confirming that their scaling exponents do differ. This difference does not seem to depend on Reynolds number. Making use of the Mellin transform, we further map longitudinal to (rescaled) transverse probability density functions.