No Arabic abstract
We present models of the inner region of the circumstellar disk of RY Tau which aim to explain our near-infrared ($K$-band: $2.1,mu$m) interferometric observations while remaining consistent with the optical to near-infrared portions of the spectral energy distribution. Our sub-milliarcsecond resolution CHARA Array observations are supplemented with shorter baseline, archival data from PTI, KI and VLTI/GRAVITY and modeled using an axisymmetric Monte Carlo radiative transfer code. The $K$-band visibilities are well-fit by models incorporating a central star illuminating a disk with an inner edge shaped by dust sublimation at $0.210pm0.005,$au, assuming a viewing geometry adopted from millimeter interferometry ($65^{circ}$ inclined with a disk major axis position angle of $23^{circ}$). This sublimation radius is consistent with that expected of Silicate grains with a maximum size of $0.36-0.40,mu$m contributing to the opacity and is an order of magnitude further from the star than the theoretical magnetospheric truncation radius. The visibilities on the longest baselines probed by CHARA indicate that we lack a clear line-of-sight to the stellar photosphere. Instead, our analysis shows that the central star is occulted by the disk surface layers close to the sublimation rim. While we do not see direct evidence of temporal variability in our multi-epoch CHARA observations, we suggest the aperiodic photometric variability of RY~Tau is likely related temporal and/or azimuthal variations in the structure of the disk surface layers.
Jets are rarely associated with pre-main-sequence intermediate-mass stars. Optical and near-IR observations of jet-driving sources are often hindered by the presence of a natal envelope. Jets around partly embedded sources are a useful diagnostic to constrain the geometry of the concealed protoplanetary disk. In fact, the jet-driving mechanisms are affected by both spatial anisotropies and episodic variations at the (sub-)au scale from the star. We obtained a rich set of high-contrast VLT/SPHERE observations from 0.6 micron to 2.2 micron of the young intermediate-mass star RY Tau. Given the proximity to the Sun of this source, our images have the highest spatial resolution ever obtained for an atomic jet. Optical observations in polarized light show no sign of the protoplanetary disk detected by ALMA. Instead, we observed a diffuse signal resembling a remnant envelope with an outflow cavity. The jet is detected in four spectral lines. The jet appears to be wiggling and its radial width increasing with the distance is complementary to the shape of the outflow cavity suggesting a strong jet/envelope interaction. Through the estimated tangential velocity, we revealed a possible connection between the launching time of the jet sub-structures and the stellar activity of RY Tau. RY Tau is at an intermediate stage toward the dispersal of the natal envelope. This source shows episodic increases of mass accretion/ejection similarly to other known intermediate-mass stars. The amount of observed jet wiggle is consistent with the presence of a precessing disk warp or misaligned inner disk that would be induced by an unseen planetary/sub-stellar companion at sub-/few-au scales. The high disk mass of RY Tau and of two other jet-driving intermediate-mass stars, HD163296 and MWC480, suggests that massive, full disks are more efficient at launching prominent jets.
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of 0.001 - 0.003 Msun, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.
We report FUV, optical, and NIR observations of three T Tauri stars in the Orion OB1b subassociation with H$alpha$ equivalent widths consistent with low or absent accretion and various degrees of excess flux in the mid-infrared. We aim to search for evidence of gas in the inner disk in HST ACS/SBC spectra, and to probe the accretion flows onto the star using H$alpha$ and He I $lambda$10830 in spectra obtained at the Magellan and SOAR telescopes. At the critical age of 5 Myr, the targets are at different stages of disk evolution. One of our targets is clearly accreting, as shown by redshifted absorption at free-fall velocities in the He I line and wide wings in H$alpha$; however, a marginal detection of FUV H$_2$ suggests that little gas is present in the inner disk, although the spectral energy distribution indicates that small dust still remains close to the star. Another target is surrounded by a transitional disk, with an inner cavity in which little sub-micron dust remains. Still, the inner disk shows substantial amounts of gas, accreting onto the star at a probably low, but uncertain rate. The third target lacks both a He I line or FUV emission, consistent with no accretion or inner gas disk; its very weak IR excess is consistent with a debris disk. Different processes occurring in targets with ages close to the disk dispersal time suggest that the end of accretion phase is reached in diverse ways.
Context: Quantifying the gas content inside the dust gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the disk of HD 139614, a Herbig Ae star with a transition disk exhibiting a dust gap from 2.3 to 6 AU. Methods: We have obtained ESO/VLT CRIRES high-resolution spectra of CO ro-vibrational emission. We derived constraints on the disks structure by modeling the line-profiles, the spectroastrometric signal, and the rotational diagrams using flat Keplerian disk models. Results: We detected v=1-0 12CO, 2-1 12CO, 1-0 13CO, 1-0 C18O, and 1-0 C17O ro-vibrational lines. 12CO v=1-0 lines have an average width of 14 km/s, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km/s narrower, and are dominated by emission at R>6 AU. The 12CO v=1-0 line-profile indicates that if there is a gap in the gas it must be narrower than 2 AU. We find that a drop in the gas surface density (delta_gas) at R<5-6 AU is required to simultaneously reproduce the line-profiles and rotational diagrams of the three CO isotopologs. Delta_gas can range from 10^-2 to 10^-4 depending on the gas-to-dust ratio of the outer disk. We find that at 1<R<6 AU the gas surface density profile is flat or increases with radius. We derive a gas column density at 1<R<6 AU of NH=3x10^19 - 10^21 cm^-2. We find a 5sigma upper limit on NCO at R<1 AU of 5x10^15 cm^-2 (NH<5x10^19 cm^-2). Conclusions: The dust gap in the disk of HD 139614 has gas. The gas surface density in the disk at R<6 AU is significantly lower than the surface density expected from HD 139614s accretion rate assuming a viscous alpha-disk model. The gas density drop, the non-negative density gradient of the gas inside 6 AU, and the absence of a wide (>2 AU) gas gap suggest the presence of an embedded <2 MJ planet at around 4 AU.
We used new ALMA $^{13}$CO and C$^{18}$O(3-2) observations obtained at high angular resolution ($sim$0.2) together with previous CO(3-2) and (6-5) ALMA data and continuum maps at 1.3 and 0.8 mm in order to determine the gas properties (temperature, density, and kinematics) in the cavity and to a lesser extent in the outer disk of GG Tau A, the prototype of a young triple T Tauri star that is surrounded by a massive and extended Keplerian outer disk. By deprojecting, we studied the radial and azimuthal gas distribution and its kinematics. We also applied a new method to improve the deconvolution of the CO data and in particular better quantify the emission from gas inside the cavity. We perform local and nonlocal thermodynamic equilibrium studies in order to determine the excitation conditions and relevant physical parameters inside the ring and in the central cavity. Residual emission after removing a smooth-disk model indicates unresolved structures at our angular resolution, probably in the form of irregular rings or spirals. The outer disk is cold, with a temperature $<20$ K beyond 250 au that drops quickly (r$^{-1}$). The kinematics of the gas inside the cavity reveals infall motions at about 10% of the Keplerian speed. We derive the amount of gas in the cavity, and find that the brightest clumps, which contain about 10% of this mass, have kinetic temperatures 40$-$80 K, CO column densities of a few 10$^{17}$ cm$^{-2}$, and H$_2$ densities around 10$^7$ cm$^{-3}$. Although the gas in the cavity is only a small fraction of the disk mass, the mass accretion rate throughout the cavity is comparable to or higher than the stellar accretion rate. It is accordingly sufficient to sustain the circumstellar disks on a long timescale.