No Arabic abstract
We study the Vainshtein mechanism in the context of slowly rotating stars in scalar-tensor theories. While the Vainshtein screening is well established for spherically symmetric spacetimes, we examine its validity in the axisymmetric case for slowly rotating sources. We show that the deviations from the general relativity solution are small in the weak-field approximation outside the star: the solution for the frame-dragging function is the same as in general relativity at leading order. Moreover, in most cases the corrections are suppressed by powers of the Vainshtein radius provided that the screening operates in spherical symmetry. Outside the Vainshtein radius, the frame dragging function receives corrections that are not suppressed by the Vainshtein radius, but which are still subleading. This suggests that the Vainshtein mechanism in general can be extended to slowly rotating stars and that it works analogously to the static case inside the Vainshtein radius. We also study relativistic stars and show that for some theories the frame-dragging function in vacuum does not receive corrections at all, meaning that the screening is perfect outside the star.
We study isotropic and slowly-rotating stars made of dark energy adopting the extended Chaplygin equation-of-state. We compute the moment of inertia as a function of the mass of the stars, both for rotating and non-rotating objects. The solution for the non-diagonal metric component as a function of the radial coordinate for three different star masses is shown as well. We find that i) the moment of inertia increases with the mass of the star, ii) in the case of non-rotating objects the moment of inertia grows faster, and iii) the curve corresponding to rotation lies below the one corresponding to non-rotating stars.
We construct slowly rotating black-hole solutions of Einsteinian cubic gravity (ECG) in four dimensions with flat and AdS asymptotes. At leading order in the rotation parameter, the only modification with respect to the static case is the appearance of a non-vanishing $g_{tphi}$ component. Similarly to the static case, the order of the equation determining such component can be reduced twice, giving rise to a second-order differential equation which can be easily solved numerically as a function of the ECG coupling. We study how various physical properties of the solutions are modified with respect to the Einstein gravity case, including its angular velocity, photon sphere, photon rings, shadow, and innermost stable circular orbits (in the case of timelike geodesics).
Gravitomagnetic quasi-normal modes of neutron stars are resonantly excited by tidal effects during a binary inspiral, leading to a potentially measurable effect in the gravitational-wave signal. We take an important step towards incorporating these effects in waveform models by developing a relativistic effective action for the gravitomagnetic dynamics that clarifies a number of subtleties. Working in the slow-rotation limit, we first consider the post-Newtonian approximation and explicitly derive the effective action from the equations of motion. We demonstrate that this formulation opens a way to compute mode frequencies, yields insights into the relevant matter variables, and elucidates the role of a shift symmetry of the fluid properties under a displacement of the gravitomagnetic mode amplitudes. We then construct a fully relativistic action based on the symmetries and a power counting scheme. This action involves four coupling coefficients that depend on the internal structure of the neutron star and characterize the key matter parameters imprinted in the gravitational waves. We show that, after fixing one of the coefficients by normalization, the other three directly involve the two kinds of gravitomagnetic Love numbers (static and irrotational), and the mode frequencies. We discuss several interesting features and dynamical consequences of this action, and analyze the frequency-domain response function (the frequency-dependent ratio between the induced flux quadrupole and the external gravitomagnetic field), and a corresponding Love operator representing the time-domain response. Our results provide the foundation for deriving precision predictions of gravitomagnetic effects, and the nuclear physics they encode, for gravitational-wave astronomy.
Within the landscape of modified theories of gravity, progress in understanding the behaviour of, and developing tests for, screening mechanisms has been hindered by the complexity of the field equations involved, which are nonlinear in nature and characterised by a large hierarchy of scales. This is especially true of Vainshtein screening, where the fifth force is suppressed by high-order derivative terms which dominate within a radius much larger than the size of the source, known as the Vainshtein radius. In this work, we present the numerical code $varphi$enics, building on the FEniCS library, to solve the full equations of motion from two theories of interest for screening: a model containing high-order derivative operators in the equation of motion and one characterised by nonlinear self-interactions in two coupled scalar fields. We also include functionalities that allow the computation of higher-order operators of the scalar fields in post-processing, enabling us to check that the profiles we find are consistent solutions within the effective field theory. These two examples illustrate the different challenges experienced when trying to simulate such theories numerically, and we show how these are addressed within this code. The examples in this paper assume spherical symmetry, but the techniques may be straightforwardly generalised to asymmetric configurations. This article therefore also provides a worked example of how the finite element method can be employed to solve the screened equations of motion. $varphi$enics is publicly available and can be adapted to solve other theories of screening.
We construct rotating hybrid axion-miniboson stars (RHABSs), which are asymptotically flat, stationary, axially symmetric solutions of (3+1)-dimensional Einstein-Klein-Gordon theory. RHABSs consist of a axion field (ground state) and a free complex scalar field (first excited state). The solutions of the RHABSs have two types of nodes, including $^1S^2S$ state and $^1S^2P$ state. For different axion decay constants $f_a$, we present the mass $M$ of RHABSs as a function of the synchronized frequency $omega$, as well as the nonsynchronized frequency $omega_2$, and explore the mass $M$ versus the angular momentum $J$ for the synchronized frequency $omega$ and the nonsynchronized frequency $omega_2$ respectively. Furthermore, we study the effect of axion decay constant $f_a$ and scalar mass $mu_2$ on the existence domain of the synchronized frequency $omega$.