Do you want to publish a course? Click here

The infinite-dimensional HaPPY code: entanglement wedge reconstruction and dynamics

85   0   0.0 ( 0 )
 Added by Monica Jinwoo Kang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct an infinite-dimensional analog of the HaPPY code as a growing series of stabilizer codes defined respective to their Hilbert spaces. The Hilbert spaces are related by isometric maps, which we define explicitly. We construct a Hamiltonian that is compatible with the infinite-dimensional HaPPY code and further study the stabilizer of our code, which has an inherent fractal structure. We use this result to study the dynamics of the code and map a nontrivial bulk Hamiltonian to the boundary. We find that the image of the mapping is scale invariant, but does not create any long-range entanglement in the boundary, therefore failing to reproduce the features of a CFT. This result shows the limits of the HaPPY code as a model of the AdS/CFT correspondence, but also hints that the relevance of quantum error correction in quantum gravity may not be limited to the CFT context.



rate research

Read More

Quantum error correcting codes with finite-dimensional Hilbert spaces have yielded new insights on bulk reconstruction in AdS/CFT. In this paper, we give an explicit construction of a quantum error correcting code where the code and physical Hilbert spaces are infinite-dimensional. We define a von Neumann algebra of type II$_1$ acting on the code Hilbert space and show how it is mapped to a von Neumann algebra of type II$_1$ acting on the physical Hilbert space. This toy model demonstrates the equivalence of entanglement wedge reconstruction and the exact equality of bulk and boundary relative entropies in infinite-dimensional Hilbert spaces.
In the holographic correspondence, subregion duality posits that knowledge of the mixed state of a finite spacelike region of the boundary theory allows full reconstruction of a specific region of the bulk, known as the entanglement wedge. This statement has been proven for local bulk operators. In this paper, specializing first for simplicity to a Rindler wedge of AdS$_3$, we find that generic curves within the wedge are in fact not fully reconstructible with entanglement entropies in the corresponding boundary region, even after using the most general variant of hole-ography, which was recently shown to suffice for reconstruction of arbitrary spacelike curves in the Poincare patch. This limitation is an analog of the familiar phenomenon of entanglement shadows, which we call entanglement shade. We overcome it by showing that the information about the nonreconstructible curve segments is encoded in a slight generalization of the concept of entanglement of purification, whose holographic dual has been discussed very recently. We introduce the notion of differential purification, and demonstrate that, in combination with differential entropy, it enables the complete reconstruction of all spacelike curves within an arbitrary entanglement wedge in any 3-dimensional bulk geometry.
175 - Chris Akers , Pratik Rath 2019
We argue that holographic CFT states require a large amount of tripartite entanglement, in contrast to the conjecture that their entanglement is mostly bipartite. Our evidence is that this mostly-bipartite conjecture is in sharp conflict with two well-supported conjectures about the entanglement wedge cross section surface $E_W$. If $E_W$ is related to either the CFTs reflected entropy or its entanglement of purification, then those quantities can differ from the mutual information at $mathcal{O}(frac{1}{G_N})$. We prove that this implies holographic CFT states must have $mathcal{O}(frac{1}{G_N})$ amounts of tripartite entanglement. This proof involves a new Fannes-type inequality for the reflected entropy, which itself has many interesting applications.
We give a general construction of a setup that verifies bulk reconstruction, conservation of relative entropies, and equality of modular flows between the bulk and the boundary, for infinite-dimensional systems with operator-pushing. In our setup, a bulk-to-boundary map is defined at the level of the $C^*$-algebras of state-independent observables. We then show that if the boundary dynamics allow for the existence of a KMS state, physically relevant Hilbert spaces and von Neumann algebras can be constructed directly from our framework. Our construction should be seen as a state-dependent construction of the other side of a wormhole and clarifies the meaning of black hole reconstruction claims such as the Papadodimas-Raju proposal. As an illustration, we apply our result to construct a wormhole based on the HaPPY code, which satisfies all properties of entanglement wedge reconstruction.
116 - Masamichi Miyaji 2021
We consider spacetime initiated by a finite-sized boundary on which a pure initial matter state is set as a natural generalization of the Hartle-Hawking no-boundary state. We study entanglement entropy of the gravitationally prepared matter state at the final time slice. We find that the entropy of the initial state or the entanglement island gives the entropy for large subregions on the final time slice. Consequently, we find the entanglement entropy is bounded from above by the boundary area of the island, leading to an entropy bound in terms of the island formula. The island $I$ appears in the analytically continued spacetime, either at the bra or the ket part of the spacetime in Schwinger-Keldysh formalism, and the entropy is given by an average of pseudo entropy of each entanglement island. We find a necessary condition of the initial state to be consistent with the strong sub-additivity. The condition requires that any probe degrees of freedom are thermally entangled with the rest of the system. We then study which initial condition leads to our finite-sized initial boundary or the Hartle-Hawking no-boundary state. Due to the absence of a moment of time reflection symmetry, the island in our setup requires a generalization of the entanglement wedge, which we call {it{pseudo entanglement wedge}}. In pseudo entanglement wedge reconstruction, we consider reconstructing the bulk matter transition matrix on $Acup I$, from a fine-grained state on $A$. The bulk transition matrix is given by a thermofield double state with a projection by the initial state. We provide an AdS/BCFT model, which provides a double holography model of our setup by considering EOW branes with corners. We also find the exponential hardness of such reconstruction task using a generalization of Pythons lunch conjecture to pseudo generalized entropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا