Do you want to publish a course? Click here

Ground and Excited Exciton Polarons in Monolayer MoSe2

391   0   0.0 ( 0 )
 Added by Yueh-Chun Wu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Monolayer transition metal dichalcogenide semiconductors, with versatile experimentally accessible exciton species, offer an interesting platform for investigating the interaction between excitons and a Fermi sea of charges. Using hexagonal boron nitride encapsulated monolayer MoSe2, we study the impact of charge density tuning on the ground and excited Rydberg states in the atomic layer. Consistent excitonpolaron behavior is revealed in both photoluminescence and reflection spectra of the A exciton 1s (A:1s) Rydberg state, in contrast to previous studies. The A:2s Rydberg state provides an opportunity to understand such interactions with greatly reduced exciton binding energy. We found that the impact of the Fermi sea becomes much more dramatic. With a photoluminescence upconversion technique, we further verify the 2s polaron-like behavior for the repulsive branch of B:2s exciton whose energy is well above the bare bandgap. Our studies show that the polaron-like interaction features are quite generic and highly robust, offering key insights into the dressed manybody state in a Fermi sea.

rate research

Read More

318 - B. Han , C. Robert , E. Courtade 2018
Transitions metal dichalcogenides (TMDs) are direct semiconductors in the atomic monolayer (ML) limit with fascinating optical and spin-valley properties. The strong optical absorption of up to 20 % for a single ML is governed by excitons, electron-hole pairs bound by Coulomb attraction. Excited exciton states in MoSe$_2$ and MoTe$_2$ monolayers have so far been elusive due to their low oscillator strength and strong inhomogeneous broadening. Here we show that encapsulation in hexagonal boron nitride results in emission line width of the A:1$s$ exciton below 1.5 meV and 3 meV in our MoSe$_2$ and MoTe$_2$ monolayer samples, respectively. This allows us to investigate the excited exciton states by photoluminescence upconversion spectroscopy for both monolayer materials. The excitation laser is tuned into resonance with the A:1$s$ transition and we observe emission of excited exciton states up to 200 meV above the laser energy. We demonstrate bias control of the efficiency of this non-linear optical process. At the origin of upconversion our model calculations suggest an exciton-exciton (Auger) scattering mechanism specific to TMD MLs involving an excited conduction band thus generating high energy excitons with small wave-vectors. The optical transitions are further investigated by white light reflectivity, photoluminescence excitation and resonant Raman scattering confirming their origin as excited excitonic states in monolayer thin semiconductors.
We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790 - 820 nm. We observe a strong density-dependent initial decay of the exciton population in monolayers, which can be well described by the exciton-exciton annihilation. Such a feature is not observed in the bulk under comparable conditions. We also observe the saturated absorption induced by exciton phase-space filling in both monolayers and the bulk, which indicates their potential applications as saturable absorbers.
73 - Woojoo Lee , Yi Lin , Li-Shuan Lu 2020
The emergence of transition metal dichalcogenides (TMD) as crystalline atomically thin semiconductors has created a tremendous amount of scientific and technological interest. Many novel device concepts have been proposed and realized (1-3). Nonetheless, progress in k-space investigations of ground/excited state electronic structures has been slow due to the challenge to create large scale, laterally homogeneous samples. Taking advantage of recent advancements in chemical vapor deposition, here we create a wafer-size MoS2 monolayer with well-aligned lateral orientation for advanced electron spectroscopy studies (4-6). Low energy electron diffraction and scanning tunneling microscopy (STM) demonstrate atomically clean surfaces with in-plane crystalline orientation. The ground state and excited state electronic structures are probed using scanning tunneling spectroscopy (STS), angle-resolved photoemission (ARPES) and time-resolved (tr-)ARPES. In addition to mapping out the momentum-space quasiparticle band structure in the valence and conduction bands, we unveil ultrafast excited state dynamics, including inter- and intra-valley carrier scattering and a rapid downward energy shift by ~ 0.2eV lower than the initial free carrier state at Sigma point.
The strong excitonic effect in monolayer transition metal dichalcogenide (TMD) semiconductors has enabled many fascinating light-matter interaction phenomena. Examples include strongly coupled exciton-polaritons and nearly perfect atomic monolayer mirrors. The strong light-matter interaction also opens the door for dynamical control of mechanical motion through the exciton resonance of monolayer TMDs. Here we report the observation of exciton-optomechanical coupling in a suspended monolayer MoSe2 mechanical resonator. By moderate optical pumping near the MoSe2 exciton resonance, we have observed optical damping and anti-damping of mechanical vibrations as well as the optical spring effect. The exciton-optomechanical coupling strength is also gate-tunable. Our observations can be understood in a model based on photothermal backaction and gate-induced mirror symmetry breaking in the device structure. The observation of gate-tunable exciton-optomechanical coupling in a monolayer semiconductor may find applications in nanoelectromechanical systems (NEMS) and in exciton-optomechanics.
We present a detailed investigation of the exciton and trion dynamics in naturally doped MoSe2 and WSe2 single atomic layers as a function of temperature in the range 10-300K under above band-gap laser excitation. By combining time-integrated and time-resolved photoluminescence (PL) spectroscopy we show the importance of exciton and trion localization in both materials at low temperatures. We also reveal the transition to delocalized exciton complexes at higher temperatures where the exciton and trion thermal energy exceeds the typical localization energy. This is accompanied with strong changes in PL including suppression of the trion PL and decrease of the trion PL life-time, as well as significant changes for neutral excitons in the temperature dependence of the PL intensity and appearance of a pronounced slow PL decay component. In MoSe2 and WSe2 studied here, the temperatures where such strong changes occur are observed at around 100 and 200 K, respectively, in agreement with their inhomogeneous PL linewidth of 8 and 20 meV at T~10K. The observed behavior is a result of a complex interplay between influences of the specific energy ordering of bright and dark excitons in MoSe2 and WSe2, sample doping, trion and exciton localization and various temperature-dependent non-radiative processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا