No Arabic abstract
Since the insertion area in the middle ear or in the sinus cavity is very narrow, the mobility of the endoscope is reduced to a rotation around a virtual point and a translation for the insertion of the camera. This article first presents the anatomy of these regions obtained from 3D scanning and then a mechanism based on the architecture of the agile eye coupled to a double parallelogram to create an RCM. This mechanism coupled with a positioning mechanism is used to handle an endoscope. This tool is used in parallel to the surgeon to allow him to have better rendering of the medium ear than the use of Binocular scope. The mechanism offers a wide working space without singularity whose borders are fixed by joint limits. This feature allows ergonomic positioning of the patients head on the bed as well as for the surgeon and allows other applications such as sinus surgery.
We present a practical approach to capturing ear-to-ear face models comprising both 3D meshes and intrinsic textures (i.e. diffuse and specular albedo). Our approach is a hybrid of geometric and photometric methods and requires no geometric calibration. Photometric measurements made in a lightstage are used to estimate view dependent high resolution normal maps. We overcome the problem of having a single photometric viewpoint by capturing in multiple poses. We use uncalibrated multiview stereo to estimate a coarse base mesh to which the photometric views are registered. We propose a novel approach to robustly stitching surface normal and intrinsic texture data into a seamless, complete and highly detailed face model. The resulting relightable models provide photorealistic renderings in any view.
Traditional control and task automation have been successfully demonstrated in a variety of structured, controlled environments through the use of highly specialized modeled robotic systems in conjunction with multiple sensors. However, the application of autonomy in endoscopic surgery is very challenging, particularly in soft tissue work, due to the lack of high-quality images and the unpredictable, constantly deforming environment. In this work, we propose a novel surgical perception framework, SuPer, for surgical robotic control. This framework continuously collects 3D geometric information that allows for mapping a deformable surgical field while tracking rigid instruments within the field. To achieve this, a model-based tracker is employed to localize the surgical tool with a kinematic prior in conjunction with a model-free tracker to reconstruct the deformable environment and provide an estimated point cloud as a mapping of the environment. The proposed framework was implemented on the da Vinci Surgical System in real-time with an end-effector controller where the target configurations are set and regulated through the framework. Our proposed framework successfully completed soft tissue manipulation tasks with high accuracy. The demonstration of this novel framework is promising for the future of surgical autonomy. In addition, we provide our dataset for further surgical research.
Master control console is a place where robots collaborate with humans in a shared environment. To this end, ergonomics is an important aspect to be considered. With ergonomic design, the surgeons can feel more comfortable to conduct the surgical tasks with higher efficiency, and the quality of the teleoperated robotic surgery can be improved. In this paper, an Ergonomic Interaction Workspace Analysis method is proposed to optimize master manipulators and fulfil ergonomics consideration for designing a master manipulator for teleoperated robotic surgery.
Autonomous surgical execution relieves tedious routines and surgeons fatigue. Recent learning-based methods, especially reinforcement learning (RL) based methods, achieve promising performance for dexterous manipulation, which usually requires the simulation to collect data efficiently and reduce the hardware cost. The existing learning-based simulation platforms for medical robots suffer from limited scenarios and simplified physical interactions, which degrades the real-world performance of learned policies. In this work, we designed SurRoL, an RL-centered simulation platform for surgical robot learning compatible with the da Vinci Research Kit (dVRK). The designed SurRoL integrates a user-friendly RL library for algorithm development and a real-time physics engine, which is able to support more PSM/ECM scenarios and more realistic physical interactions. Ten learning-based surgical tasks are built in the platform, which are common in the real autonomous surgical execution. We evaluate SurRoL using RL algorithms in simulation, provide in-depth analysis, deploy the trained policies on the real dVRK, and show that our SurRoL achieves better transferability in the real world.
Many have explored the application of continuum robot manipulators for minimally invasive surgery, and have successfully demonstrated the advantages their flexible design provides -- with some solutions having reached commercialisation and clinical practice. However, the usual high complexity and closed-nature of such designs has traditionally restricted the shared development of continuum robots across the research area, thus impacting further progress and the solution of open challenges. In order to close this gap, this paper introduces ENDO, an open-source 3-segment continuum robot manipulator with control and actuation mechanism, whose focus is on simplicity, affordability, and accessibility. This robotic system is fabricated from low cost off-the-shelf components and rapid prototyping methods, and its information for implementation (and that of future iterations), including CAD files and source code, is available to the public on the Open Source Medical Robots initiatives repository on GitHub (https://github.com/OpenSourceMedicalRobots), with the control library also available directly from Arduino. Herein, we present details of the robot design and control, validate functionality by experimentally evaluating its workspace, and discuss possible paths for future development.