Do you want to publish a course? Click here

Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence

65   0   0.0 ( 0 )
 Added by Eungyeup Kim
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper tackles the automatic colorization task of a sketch image given an already-colored reference image. Colorizing a sketch image is in high demand in comics, animation, and other content creation applications, but it suffers from information scarcity of a sketch image. To address this, a reference image can render the colorization process in a reliable and user-driven manner. However, it is difficult to prepare for a training data set that has a sufficient amount of semantically meaningful pairs of images as well as the ground truth for a colored image reflecting a given reference (e.g., coloring a sketch of an originally blue car given a reference green car). To tackle this challenge, we propose to utilize the identical image with geometric distortion as a virtual reference, which makes it possible to secure the ground truth for a colored output image. Furthermore, it naturally provides the ground truth for dense semantic correspondence, which we utilize in our internal attention mechanism for color transfer from reference to sketch input. We demonstrate the effectiveness of our approach in various types of sketch image colorization via quantitative as well as qualitative evaluation against existing methods.



rate research

Read More

Given a reference object of an unknown type in an image, human observers can effortlessly find the objects of the same category in another image and precisely tell their visual boundaries. Such visual cognition capability of humans seems absent from the current research spectrum of computer vision. Existing segmentation networks, for example, rely on a humongous amount of labeled data, which is laborious and costly to collect and annotate; besides, the performance of segmentation networks tend to downgrade as the number of the category increases. In this paper, we introduce a novel Reference semantic segmentation Network (Ref-Net) to conduct visual boundary knowledge translation. Ref-Net contains a Reference Segmentation Module (RSM) and a Boundary Knowledge Translation Module (BKTM). Inspired by the human recognition mechanism, RSM is devised only to segment the same category objects based on the features of the reference objects. BKTM, on the other hand, introduces two boundary discriminator branches to conduct inner and outer boundary segmentation of the target objectin an adversarial manner, and translate the annotated boundary knowledge of open-source datasets into the segmentation network. Exhaustive experiments demonstrate that, with tens of finely-grained annotated samples as guidance, Ref-Net achieves results on par with fully supervised methods on six datasets.
In this paper, we propose a novel reference based image super-resolution approach via Variational AutoEncoder (RefVAE). Existing state-of-the-art methods mainly focus on single image super-resolution which cannot perform well on large upsampling factors, e.g., 8$times$. We propose a reference based image super-resolution, for which any arbitrary image can act as a reference for super-resolution. Even using random map or low-resolution image itself, the proposed RefVAE can transfer the knowledge from the reference to the super-resolved images. Depending upon different references, the proposed method can generate differe
This paper proposes a novel Attention-based Multi-Reference Super-resolution network (AMRSR) that, given a low-resolution image, learns to adaptively transfer the most similar texture from multiple reference images to the super-resolution output whilst maintaining spatial coherence. The use of multiple reference images together with attention-based sampling is demonstrated to achieve significantly improved performance over state-of-the-art reference super-resolution approaches on multiple benchmark datasets. Reference super-resolution approaches have recently been proposed to overcome the ill-posed problem of image super-resolution by providing additional information from a high-resolution reference image. Multi-reference super-resolution extends this approach by providing a more diverse pool of image features to overcome the inherent information deficit whilst maintaining memory efficiency. A novel hierarchical attention-based sampling approach is introduced to learn the similarity between low-resolution image features and multiple reference images based on a perceptual loss. Ablation demonstrates the contribution of both multi-reference and hierarchical attention-based sampling to overall performance. Perceptual and quantitative ground-truth evaluation demonstrates significant improvement in performance even when the reference images deviate significantly from the target image. The project website can be found at https://marcopesavento.github.io/AMRSR/
In this paper, we present a fast exemplar-based image colorization approach using color embeddings named Color2Embed. Generally, due to the difficulty of obtaining input and ground truth image pairs, it is hard to train a exemplar-based colorization model with unsupervised and unpaired training manner. Current algorithms usually strive to achieve two procedures: i) retrieving a large number of reference images with high similarity for preparing training dataset, which is inevitably time-consuming and tedious; ii) designing complicated modules to transfer the colors of the reference image to the target image, by calculating and leveraging the deep semantic correspondence between them (e.g., non-local operation), which is computationally expensive during testing. Contrary to the previous methods, we adopt a self-augmented self-reference learning scheme, where the reference image is generated by graphical transformations from the original colorful one whereby the training can be formulated in a paired manner. Second, in order to reduce the process time, our method explicitly extracts the color embeddings and exploits a progressive style feature Transformation network, which injects the color embeddings into the reconstruction of the final image. Such design is much more lightweight and intelligible, achieving appealing performance with fast processing speed.
The defect detection task can be regarded as a realistic scenario of object detection in the computer vision field and it is widely used in the industrial field. Directly applying vanilla object detector to defect detection task can achieve promising results, while there still exists challenging issues that have not been solved. The first issue is the texture shift which means a trained defect detector model will be easily affected by unseen texture, and the second issue is partial visual confusion which indicates that a partial defect box is visually similar with a complete box. To tackle these two problems, we propose a Reference-based Defect Detection Network (RDDN). Specifically, we introduce template reference and context reference to against those two problems, respectively. Template reference can reduce the texture shift from image, feature or region levels, and encourage the detectors to focus more on the defective area as a result. We can use either well-aligned template images or the outputs of a pseudo template generator as template references in this work, and they are jointly trained with detectors by the supervision of normal samples. To solve the partial visual confusion issue, we propose to leverage the carried context information of context reference, which is the concentric bigger box of each region proposal, to perform more accurate region classification and regression. Experiments on two defect detection datasets demonstrate the effectiveness of our proposed approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا