We report on the pressure evolution of the giant anomalous Hall effect (AHE) in the chiral antiferromagnet Mn$_3$Ge. The AHE originating from the non-vanishing Berry curvature in Mn$_3$Ge can be continuously tuned by application of hydrostatic pressure. At room temperature, the Hall signal changes sign as a function of pressure and vanishes completely at $p=1.53$ GPa. Even though the Hall conductivity changes sign upon increasing pressure, the room-temperature saturation value of 23 ${rm Omega^{-1}cm^{-1}}$ at 2.85 GPa is remarkably high and comparable to the saturation value at ambient pressure of about 40 ${rm Omega^{-1}cm^{-1}}$. The change in the Hall conductivity can be directly linked to a gradual change of the size of the in-plane components of the Mn moments in the non-collinear triangular magnetic structure. Our findings, therefore, provide a route for tuning of the AHE in the chiral antiferromagnetic Mn$_3$Ge.