Tuning the electric properties of crystalline solids is at the heart of material science and electronics. Generating the electric field-effect via an external voltage is a clean, continuous and systematic method. Here, utilizing the unique electric dipole locking in van der Waals (vdW) ferroelectric alpha-In2Se3, we report a new approach to establish the electric gating effect, where the electrostatic doping in the out-of-plane direction is induced and controlled by an in-plane voltage. With the vertical vdW heterostructure of ultrathin alpha-In2Se3 and MoS2, we validate an in-plane voltage gated coplanar field-effect transistor (CP-FET) with distinguished and retentive on/off ratio. Our results demonstrate unprecedented electric control of ferroelectricity, which paves the way for integrating two-dimensional (2D) ferroelectric into novel nanoelectronic devices with broad applications.