No Arabic abstract
The leximin solution -- which selects an allocation that maximizes the minimum utility, then the second minimum utility, and so forth -- is known to provide EFX (envy-free up to any good) fairness guarantee in some contexts when allocating indivisible goods. However, it remains unknown how fair the leximin solution is when used to allocate indivisible chores. In this paper, we demonstrate that the leximin solution can be modified to also provide compelling fairness guarantees for the allocation of indivisible chores. First, we generalize the definition of the leximin solution. Then, we show that the leximin solution finds a PROP1 (proportional up to one good) and PO (Pareto-optimal) allocation for 3 or 4 agents in the context of chores allocation with additive distinct valuations. Additionally, we prove that the leximin solution is EFX for combinations of goods and chores for agents with general but identical valuations.
In this paper, we consider how to fairly allocate $m$ indivisible chores to a set of $n$ (asymmetric) agents. As exact fairness cannot be guaranteed, motivated by the extensive study of EF1, EFX and PROP1 allocations, we propose and study {em proportionality up to any item} (PROPX), and show that a PROPX allocation always exists. We argue that PROPX might be a more reliable relaxation for proportionality in practice than the commonly studied maximin share fairness (MMS) by the facts that (1) MMS allocations may not exist even with three agents, but PROPX allocations always exist even for the weighted case when agents have unequal obligation shares; (2) any PROPX allocation ensures 2-approximation for MMS, but an MMS allocation can be as bad as $Theta(n)$-approximation to PROPX. We propose two algorithms to compute PROPX allocations and each of them has its own merits. Our first algorithm is based on a recent refinement for the well-known procedure -- envy-cycle elimination, where the returned allocation is simultaneously PROPX and $4/3$-approximate MMS. A by-product result is that an exact EFX allocation for indivisible chores exists if all agents have the same ordinal preference over the chores, which might be of independent interest. The second algorithm is called bid-and-take, which applies to the weighted case. Furthermore, we study the price of fairness for (weighted) PROPX allocations, and show that the algorithm computes allocations with the optimal guarantee on the approximation ratio to the optimal social welfare without fairness constraints.
In this paper we study how to fairly allocate a set of m indivisible chores to a group of n agents, each of which has a general additive cost function on the items. Since envy-free (EF) allocation is not guaranteed to exist, we consider the notion of envy-freeness up to any item (EFX). In contrast to the fruitful results regarding the (approximation of) EFX allocations for goods, very little is known for the allocation of chores. Prior to our work, for the allocation of chores, it is known that EFX allocations always exist for two agents, or general number of agents with IDO cost functions. For general instances, no non-trivial approximation result regarding EFX allocation is known. In this paper we make some progress in this direction by showing that for three agents we can always compute a 5-approximation of EFX allocation in polynomial time. For n>=4 agents, our algorithm always computes an allocation that achieves an approximation ratio of O(n^2) regarding EFX.
We consider the problem of fairly allocating indivisible public goods. We model the public goods as elements with feasibility constraints on what subsets of elements can be chosen, and assume that agents have additive utilities across elements. Our model generalizes existing frameworks such as fair public decision making and participatory budgeting. We study a groupwise fairness notion called the core, which generalizes well-studied notions of proportionality and Pareto efficiency, and requires that each subset of agents must receive an outcome that is fair relative to its size. In contrast to the case of divisible public goods (where fractional allocations are permitted), the core is not guaranteed to exist when allocating indivisible public goods. Our primary contributions are the notion of an additive approximation to the core (with a tiny multiplicative loss), and polynomial time algorithms that achieve a small additive approximation, where the additive factor is relative to the largest utility of an agent for an element. If the feasibility constraints define a matroid, we show an additive approximation of 2. A similar approach yields a constant additive bound when the feasibility constraints define a matching. More generally, if the feasibility constraints define an arbitrary packing polytope with mild restrictions, we show an additive guarantee that is logarithmic in the width of the polytope. Our algorithms are based on variants of the convex program for maximizing the Nash social welfare, but differ significantly from previous work in how it is used. Our guarantees are meaningful even when there are fewer elements than the number of agents. As far as we are aware, our work is the first to approximate the core in indivisible settings.
We initiate the work on maximin share (MMS) fair allocation of m indivisible chores to n agents using only their ordinal preferences, from both algorithmic and mechanism design perspectives. The previous best-known approximation is 2-1/n by Aziz et al. [IJCAI 2017]. We improve this result by giving a simple deterministic 5/3-approximation algorithm that determines an allocation sequence of agents, according to which items are allocated one by one. By a tighter analysis, we show that for n=2,3, our algorithm achieves better approximation ratios, and is actually optimal. We also consider the setting with strategic agents, where agents may misreport their preferences to manipulate the outcome. We first provide a O(log (m/n))-approximation consecutive picking algorithm, and then improve the approximation ratio to O(sqrt{log n}) by a randomized algorithm. Our results uncover some interesting contrasts between the approximation ratios achieved for chores versus goods.
We introduce and analyze new envy-based fairness concepts for agents with weights that quantify their entitlements in the allocation of indivisible items. We propose two variants of weighted envy-freeness up to one item (WEF1): strong, where envy can be eliminated by removing an item from the envied agents bundle, and weak, where envy can be eliminated either by removing an item (as in the strong version) or by replicating an item from the envied agents bundle in the envying agents bundle. We show that for additive valuations, an allocation that is both Pareto optimal and strongly WEF1 always exists and can be computed in pseudo-polynomial time; moreover, an allocation that maximizes the weighted Nash social welfare may not be strongly WEF1, but always satisfies the weak version of the property. Moreover, we establish that a generalization of the round-robin picking sequence algorithm produces in polynomial time a strongly WEF1 allocation for an arbitrary number of agents; for two agents, we can efficiently achieve both strong WEF1 and Pareto optimality by adapting the adjusted winner procedure. Our work highlights several aspects in which weighted fair division is richer and more challenging than its unweighted counterpart.