No Arabic abstract
An energy of $362:text{MJ}$ is stored in each of the two LHC proton beams for nominal beam parameters. This will be further increased to about $700:text{MJ}$ in the future High Luminosity LHC (HL-LHC) and uncontrolled beam losses represent a significant hazard for the integrity and safe operation of the machine. In this paper, a number of failure mechanisms that can lead to a fast increase of beam losses are analyzed. Most critical are failures in the magnet protection system, namely the quench heaters and a novel protection system called Coupling-Loss Induced Quench (CLIQ). An important outcome is that magnet protection has to be evaluated for its impact on the beam and designed accordingly. In particular, CLIQ, which is to protect the new HL-LHC triplet magnets, constitutes the fastest known failure in the LHC if triggered spuriously. A schematic change of CLIQ to mitigate the hazard is presented. A loss of the Beam-Beam Kick due to the extraction of one beam is another source of beam losses with a fast onset. A significantly stronger impact is expected in the upcoming LHC Run III and HL-LHC as compared to the current LHC, mainly due to the increased bunch intensity. Its criticality and mitigation methods are discussed. It is shown that symmetric quenches in the superconducting magnets for the final focusing triplet can have a significant impact on the beam on short timescales. The impact on the beam due to failures of the Beam-Beam Compensating Wires as well as coherent excitations by the transverse beam damper are also discussed.
HL-LHC federates the efforts and R&D of a large international community towards the ambitious HL- LHC objectives and contributes to establishing the European Research Area (ERA) as a focal point of global research cooperation and a leader in frontier knowledge and technologies. HL-LHC relies on strong participation from various partners, in particular from leading US and Japanese laboratories. This participation will be required for the execution of the construction phase as a global project. In particular, the US LHC Accelerator R&D Program (LARP) has developed some of the key technologies for the HL-LHC, such as the large-aperture niobium-tin ($Nb_{3}Sn) quadrupoles and the crab cavities. The proposed governance model is tailored accordingly and should pave the way for the organization of the construction phase.
The High-Luminosity Large Hadron Collider is expected to deliver up to 3000 fb$^{-1}$ of proton-proton collisions at 14 TeV center-of-mass energy. We present prospects for selected heavy-ion, Standard Model and Higgs sector measurements with the CMS detector at the HL-LHC, and discuss potential sensitivity to several beyond-Standard Model new physics scenarios.
We review the prospects for quarkonium-production studies in proton and nuclear collisions accessible during the upcoming phases of the CERN Large Hadron Collider operation after 2021, including the ultimate high-luminosity phase, with increased luminosities compared to LHC Runs 1 and 2. We address the current experimental and theoretical open issues in the field and the perspectives for future studies in quarkonium-related physics through the exploitation of the huge data samples to be collected in proton-proton, with integrated luminosities reaching up to 3/ab, in proton-nucleus and in nucleus-nucleus collisions, both in the collider and fixed-target modes. Such investigations include, among others, those of: (i) the quarkonia produced in association with other hard particles; (ii) the chi(Q) and eta(Q) down to small transverse momenta; (iii) the constraints brought in by quarkonia on gluon PDFs, nuclear PDFs, TMDs, GPDs and GTMDs, as well as on the low-x parton dynamics; (iv) the gluon Sivers effect in polarised-nucleon collisions; (v) the properties of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions and of collective partonic effects in general; and (vi) double and triple parton scatterings.
Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300/fb of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10/fb of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.
By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments ever and to study $pp$, $p$d and $p$A collisions at $sqrt{s_{NN}}=115$ GeV and Pb$p$ and PbA collisions at $sqrt{s_{NN}}=72$ GeV with high precision and modern detection techniques. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-$x$, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we will review the technical solutions to obtain a high-luminosity fixed-target experiment at the LHC and will discuss their possible implementations with the ALICE and LHCb detectors.