In this paper we have analyzed the improved version of the Gauge Unfixing (GU) formalism of the massive Carroll-Field-Jackiw model, which breaks both the Lorentz and gauge invariances, to disclose hidden symmetries to obtain gauge invariance, the key stone of the Standard Model. In this process, as usual, we have converted this second-class system into a first-class one and we have obtained two gauge invariant models. We have verified that the Poisson brackets involving the gauge invariant variables, obtained through the GU formalism, coincide with the Dirac brackets between the original second-class variables of the phase space. Finally, we have obtained two gauge invariant Lagrangians where one of them represents the Stueckelberg form.