Coupling and Decoupling of Polaritonic States in Multimode Cavities


Abstract in English

We demonstrate a new type of transition within the strong coupling regime, which alters the coupling mechanism in multimode cavities. We show that this transition drastically modifies the Hamiltonian describing the polaritons, such that different cavity modes are either entangled via the material or completely decoupled. This decoupling transition occurs due to the competition between the dissipation in the material and the finite group velocity, which governs the propagation of information across the cavity and among the molecules. The results indicate that the velocity of light, which is often not taken into account in cavity quantum electrodynamics, plays a crucial role in the formation of cavity polaritons and their dynamics.

Download