No Arabic abstract
Outflows driven by large-scale magnetic fields likely play an important role in the evolution and dispersal of protoplanetary disks, and in setting the conditions for planet formation. We extend our 2-D axisymmetric non-ideal MHD model of these outflows by incorporating radiative transfer and simplified thermochemistry, with the twin aims of exploring how heating influences wind launching, and illustrating how such models can be tested through observations of diagnostic spectral lines. Our model disks launch magnetocentrifugal outflows primarily through magnetic tension forces, so the mass-loss rate increases only moderately when thermochemical effects are switched on. For typical field strengths, thermochemical and irradiation heating are more important than magnetic dissipation. We furthermore find that the entrained vertical magnetic flux diffuses out of the disk on secular timescales as a result of non-ideal MHD. Through post-processing line radiative transfer, we demonstrate that spectral line intensities and moment-1 maps of atomic oxygen, the HCN molecule, and other species show potentially observable differences between a model with a magnetically driven outflow and one with a weaker, photoevaporative outflow. In particular, the line shapes and velocity asymmetries in the moment-1 maps could enable the identification of outflows emanating from the disk surface.
The gas dynamics of weakly ionized protoplanetary disks (PPDs) is largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions ($sim1-20$ AU), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magnetic field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane that smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature characterized by mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.
In recent years hydrodynamical (HD) models have become important to describe the gas kinematics in protoplanetary disks, especially in combination with models of photoevaporation and/or magnetic-driven winds. We focus on diagnosing the the vertical extent of the VSI at 203 cells per scale height and allude at what resolution per scale height we obtain convergence. Finally, we determine the regions where EUV, FUV and X-Rays are dominant in the disk. We perform global HD simulations using the PLUTO code. We adopt a global isothermal accretion disk setup, 2.5D (2 dimensions, 3 components) which covers a radial domain from 0.5 to 5.0 and an approximately full meridional extension. We determine the 50 cells per scale height to be the lower limit to resolve the VSI. For higher resolutions, greater than 50 cells per scale height, we observe the convergence for the saturation level of the kinetic energy. We are also able to identify the growth of the `body modes, with higher growth rate for higher resolution. Full energy saturation and a turbulent steady state is reached after 70 local orbits. We determine the location of the EUV-heated region defined by the radial column density to be 10$^{19}$ cm$^{-2}$ located at $H_mathrm{R}sim9.7$, and the FUV/X-Rays-heated boundary layer defined by 10$^{22}$ cm$^{-2}$ located at $H_mathrm{R}sim6.2$, making it necessary to introduce the need of a hot atmosphere. For the first time, we report the presence of small scale vortices in the r-Z plane, between the characteristic layers of large scale vertical velocity motions. Such vortices could lead to dust concentration, promoting grain growth. Our results highlight the importance to combine photoevaporation processes in the future high-resolution studies of the turbulence and accretion processes in disks.
A global evolution picture of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard alpha-disk models have been constantly employed for its simplicity. In the mean time, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift towards accretion driven by magnetized disk winds has been realized in the recent years, thanks to studies of non-ideal magneto-hydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires sufficient level of ionization at disk surface (mainly via external far-UV radiation), wind kinematics is also affected by far-UV penetration depth and disk geometry. For typical disk lifetime of a few Myrs, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust to gas mass ratio, and promotes planet formation.
Recent multi-wavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultra-violet radiation, photoevaporation may provide an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of $M_* =0.5$-$7.0 M_{odot}$. We derive disk mass-loss rate $dot{M}$, which has strong stellar dependence as $dot{M} approx 7.30times10^{-9}(M_{*}/M_{odot})^{2}M_{odot}rm{yr}^{-1}$. The absolute value of $dot{M}$ scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semi-analytic model that well reproduces the derived mass-loss rates. The estimated inner disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner disk lifetime.
The structure and evolution of protoplanetary disks (PPDs) are largely governed by disk angular momentum transport, mediated by magnetic fields. In the most observable outer disk, PPD gas dynamics is primarily controlled by ambipolar diffusion as the dominant non-ideal magnetohydrodynamic (MHD) effect. In this work, we study the gas dynamics in outer PPDs by conducting a set of global 3D non-ideal MHD simulations with ambipolar diffusion and net poloidal magnetic flux, using the Athena++ MHD code, with resolution comparable to local simulations. Our simulations demonstrate the co-existence of magnetized disk wind and turbulence driven by the magneto-rotational instability (MRI). While MHD wind dominates disk angular momentum transport, the MRI turbulence also contributes significantly. We observe that magnetic flux spontaneously concentrate into axisymmetric flux sheets, leading to radial variations in turbulence levels, stresses, and accretion rates. Annular substructures arise as a natural consequence of magnetic flux concentration. The flux concentration phenomena show diverse properties with different levels of disk magnetization and ambipolar diffusion. The disk generally loses magnetic flux over time, though flux sheets could prevent the leak of magnetic flux in some cases. Our results demonstrate the ubiquity of disk annular substructures in weakly MRI turbulent outer PPDs, and imply a stochastic nature of disk evolution.