Do you want to publish a course? Click here

Log-Regularly Varying Scale Mixture of Normals for Robust Regression

105   0   0.0 ( 0 )
 Added by Shonosuke Sugasawa
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Linear regression with the classical normality assumption for the error distribution may lead to an undesirable posterior inference of regression coefficients due to the potential outliers. This paper considers the finite mixture of two components with thin and heavy tails as the error distribution, which has been routinely employed in applied statistics. For the heavily-tailed component, we introduce the novel class of distributions; their densities are log-regularly varying and have heavier tails than those of Cauchy distribution, yet they are expressed as a scale mixture of normal distributions and enable the efficient posterior inference by Gibbs sampler. We prove the robustness to outliers of the posterior distributions under the proposed models with a minimal set of assumptions, which justifies the use of shrinkage priors with unbounded densities for the coefficient vector in the presence of outliers. The extensive comparison with the existing methods via simulation study shows the improved performance of our model in point and interval estimation, as well as its computational efficiency. Further, we confirm the posterior robustness of our method in the empirical study with the shrinkage priors for regression coefficients.



rate research

Read More

Parameter estimation of mixture regression model using the expectation maximization (EM) algorithm is highly sensitive to outliers. Here we propose a fast and efficient robust mixture regression algorithm, called Component-wise Adaptive Trimming (CAT) method. We consider simultaneous outlier detection and robust parameter estimation to minimize the effect of outlier contamination. Robust mixture regression has many important applications including in human cancer genomics data, where the population often displays strong heterogeneity added by unwanted technological perturbations. Existing robust mixture regression methods suffer from outliers as they either conduct parameter estimation in the presence of outliers, or rely on prior knowledge of the level of outlier contamination. CAT was implemented in the framework of classification expectation maximization, under which a natural definition of outliers could be derived. It implements a least trimmed squares (LTS) approach within each exclusive mixing component, where the robustness issue could be transformed from the mixture case to simple linear regression case. The high breakdown point of the LTS approach allows us to avoid the pre-specification of trimming parameter. Compared with multiple existing algorithms, CAT is the most competitive one that can handle and adaptively trim off outliers as well as heavy tailed noise, in different scenarios of simulated data and real genomic data. CAT has been implemented in an R package `RobMixReg available in CRAN.
We introduce a new approach to a linear-circular regression problem that relates multiple linear predictors to a circular response. We follow a modeling approach of a wrapped normal distribution that describes angular variables and angular distributions and advances it for a linear-circular regression analysis. Some previous works model a circular variable as projection of a bivariate Gaussian random vector on the unit square, and the statistical inference of the resulting model involves complicated sampling steps. The proposed model treats circular responses as the result of the modulo operation on unobserved linear responses. The resulting model is a mixture of multiple linear-linear regression models. We present two EM algorithms for maximum likelihood estimation of the mixture model, one for a parametric model and another for a non-parametric model. The estimation algorithms provide a great trade-off between computation and estimation accuracy, which was numerically shown using five numerical examples. The proposed approach was applied to a problem of estimating wind directions that typically exhibit complex patterns with large variation and circularity.
It is well known that the product of two independent regularly varying random variables with the same tail index is again regularly varying with this index. In this paper, we provide sharp sufficient conditions for the regular variation property of product-type functions of regularly varying random vectors, generalizing and extending the univariate theory in various directions. The main result is then applied to characterize the regular variation property of products of iid regularly varying quadratic random matrices and of solutions to affine stochastic recurrence equations under non-standard conditions.
65 - Yanyuan Ma , Shaoli Wang , Lin Xu 2018
In fitting a mixture of linear regression models, normal assumption is traditionally used to model the error and then regression parameters are estimated by the maximum likelihood estimators (MLE). This procedure is not valid if the normal assumption is violated. To relax the normal assumption on the error distribution hence reduce the modeling bias, we propose semiparametric mixture of linear regression models with unspecified error distributions. We establish a more general identifiability result under weaker conditions than existing results, construct a class of new estimators, and establish their asymptotic properties. These asymptotic results also apply to many existing semiparametric mixture regression estimators whose asymptotic properties have remained unknown due to the inherent difficulties in obtaining them. Using simulation studies, we demonstrate the superiority of the proposed estimators over the MLE when the normal error assumption is violated and the comparability when the error is normal. Analysis of a newly collected Equine Infectious Anemia Virus data in 2017 is employed to illustrate the usefulness of the new estimator.
This paper investigates the problem of making inference about a parametric model for the regression of an outcome variable $Y$ on covariates $(V,L)$ when data are fused from two separate sources, one which contains information only on $(V, Y)$ while the other contains information only on covariates. This data fusion setting may be viewed as an extreme form of missing data in which the probability of observing complete data $(V,L,Y)$ on any given subject is zero. We have developed a large class of semiparametric estimators, which includes doubly robust estimators, of the regression coefficients in fused data. The proposed method is DR in that it is consistent and asymptotically normal if, in addition to the model of interest, we correctly specify a model for either the data source process under an ignorability assumption, or the distribution of unobserved covariates. We evaluate the performance of our various estimators via an extensive simulation study, and apply the proposed methods to investigate the relationship between net asset value and total expenditure among U.S. households in 1998, while controlling for potential confounders including income and other demographic variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا