Do you want to publish a course? Click here

Large diameter TiO$_2$ nanotubes enable integration of conformed hierarchical and blocking layers for enhanced dye-sensitized solar cell efficiency

63   0   0.0 ( 0 )
 Added by Patrik Schmuki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present work we grow anodic TiO$_2$ nanotube layer with tube diameter ~ 500 nm and an open tube mouth. We use this morphology in dye-sensitized solar cells (DSSCs) and show that these tubes allow the construction of hybrid hierarchical photoanode structures of nanotubes with a defined and wall-conformance TiO2 nanoparticles decoration. At the same time, the large diameter allows the successful establishment of an additional (insulating) blocking layer of SiO$_2$ or Al$_2$O$_3$. We show that this combination of hierarchical structure and blocking layer significantly enhances the solar cell efficiency by suppressing recombination reactions. In such a DSSC structure, the solar cell efficiency under back side illumination with AM1.5 illumination is enhanced from 5% neat tube to 7 %.



rate research

Read More

We propose a new linearizable model for the nonlinear photocurrent-voltage characteristics of nanocrystalline TiO$_2$ dye sensitized solar cells based on first principles and report predicted values for fill factors. Upon renormalization diverse experimental photocurrent-voltage data collapse onto a single universal function. These advances allow the estimation of the complete current-voltage curve and the fill factor from any three experimental data points, e.g., the open circuit voltage, the short circuit current and one intermediate measurement. The theoretical underpinning provides insight into the physical mechanisms responsible for the remarkably large fill factors as well as their known dependence on the open circuit voltage.
Au nanoparticles at the TiO$_2$ surface can enhance the photocatalytic H$_2$ generation performances owing to their electron transfer co-catalytic ability. Key to maximize the co-catalytic effect is a fine control over Au nanoparticle size and placement on the photocatalyst, in relation to parameters such as the TiO$_2$ morphology, illumination wavelength and pathway, and light penetration depth in the photocatalyst. Here we present an approach for site-selective intrinsic-decoration of anodic TiO$_2$ nanotubes (TNs) with Au nanoparticles: we produce, by Ti and Au co-sputtering, Ti-Au alloy layers that feature compositional gradients across their thickness; these layers, when anodized under self-ordering electrochemical conditions, can form Au-decorated TNs where the Au nanoparticle density and placement vary according to the Au concentration profile in the metal alloy substrates. Our results suggest that, the Au co-catalyst placement strongly affects the photocatalytic H$_2$ evolution performance of the TNs layers. We demonstrate that, when growing Au-decorated TNs, the use of Ti-Au substrates with a suitable Au compositional gradient can lead to higher H$_2$ evolution rates compared to TNs classically grown with a homogenous co-catalyst decoration. As a side effect, a proper placement of the co-catalyst nanoparticles allows for reducing the amount of noble metal without dumping the H$_2$ evolution activity.
Herein, we report on the synthesis and investigation of two triazino-isoquinoline tetrafluoroborate electrolytes as hole-blocking layers in methylammonium triiodide perovskite photovoltaic devices with fullerene electron extraction layer. We find that increasing the thickness of the dipolar hole-blocking layer results in a gradual increase in the open-circuit voltage suggesting that aggregation of the molecules can enhance the dipole induced by the layer. This finding is confirmed by theoretical calculations demonstrating that while both molecules exhibit a similar dipole moment in their isolated state, this dipole is significantly enhanced when they aggregate. Ultra-violet photoemission spectroscopy measurements show that both derivatives exhibit a high ionisation potential of 7 eV, in agreement with their effective hole-blocking nature demonstrated by the devices. However, each of the molecules shows a different electron affinity due to the increased conjugation of one of the derivatives. While the change in electron transport level between the two derivatives is as high as 0.3 eV, the difference in the open-circuit voltage of both types of devices is negligible, suggesting that the electron transport level plays only a minor role in determining the open-circuit voltage of the device. Numerical device simulations confirm that the increase in built-in potential, arising from the high dipole of the electrolyte layer, compensates for the non-ideal energetic alignment of the charge transport levels, resulting in high VOC for a range of electron transport levels. Our study demonstrates that the application of small molecule electrolytes as hole-blocking layer in inverted architecture perovskite solar cells is a powerful tool to enhance the open-circuit voltage of the devices and provides useful guidelines for designing future generations of such compounds.
Amorphous oxide thin films play a fundamental role in state-of-the art interferometry experiments, such as gravitational wave detectors where these films compose the high reflectance mirrors of end and input masses. The sensitivity of these detectors is affected by thermal noise in the mirrors with its main source being the mechanical loss of the high index layers. These thermally driven fluctuations are a fundamental limit to optical interferometry experiments and there is a pressing need to understand the underlying processes that lead to mechanical dissipation in materials at room temperature. Two strategies are known to lower the mechanical loss: employing a mixture of Ta$_2$O$_5$ with $approx$ 20% of TiO$_2$ and post-deposition annealing, but the reasons behind this are not completely understood. In this work, we present a systematic study of the structural and optical properties of ion beam sputtered TiO$_2$-doped Ta$_2$O$_5$ films as a function of the annealing temperature. We show for the first time that low mechanical loss is associated with a material morphology that consists of nanometer sized Ar-rich bubbles embedded into an atomically homogeneous mixed titanium-tantalum oxide. When the Ti cation ratio is high, however, phase separation occurs in the film which leads to increased mechanical loss. These results indicate that for designing low mechanical loss mixed oxide coatings for interferometry applications it would be beneficial to identify materials with the ability to form ternary compounds while the dopant ratio needs to be kept low to avoid phase separation.
108 - Hao Zhang , Hong Wang , Meiyang Ma 2018
Organometal trihalide perovskite solar cells have been rapidly developed and attracted much attention in recent years due to their high photoelectric conversion efficiency and low cost. Pulsed laser deposition (PLD) is a widely adopted technology which is used in the preparation of thin films, especially oxide thin films. With this technology, the thickness and composition of films can be conveniently and accurately controlled. In the structure of perovskite solar cells, TiO$_2$ layer working as the n-type semiconductor is used to block holes and transport electrons into electrode, which is crucial for the performance of whole devices. We introduced the PLD technique into preparation of TiO$_2$ layer. In comparison with common spin coating method, TiO$_2$ layer prepared by this technique is ultrathin and more compact. Compact TiO$_2$ (c-TiO$_2$) layers with optimized thickness of 32 nm have been prepared by the PLD method and the highest efficiency of 13.95 % for the MAPbI$_3$-based solar cell devices has been achieved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا