We investigate radiation of a charged particle bunch moving through a corrugated planar conductive surface. It is assumed that the corrugation period and depth are much less than the wavelengths under consideration. In this case, the corrugated structure can be replaced with some smooth surface on which the so-called equivalent boundary conditions (EBC) are fulfilled. Using the EBC method we obtain expressions for the electromagnetic field of the bunch which are presented in form of spectral integrals. It is demonstrated that the bunch generates surface waves propagating along the corrugations with the light velocity. Also we present results of numerical calculations for electromagnetic field components of surface waves depending on coordinates and show that these dependences can be used for determination of the bunch size.