Corrections to Yukawa couplings from higher dimensional operators in a natural SUSY $mathsf{SO(10)}$ and HL-LHC implications


Abstract in English

We consider a class of unified models based on the gauge group $mathsf{SO(10)}$ which with appropriate choice of Higgs representations generate in a natural way a pair of light Higgs doublets needed to accomplish electroweak symmetry breaking. In this class of models higher dimensional operators of the form matter-matter-Higgs-Higgs in the superpotential after spontaneous breaking of the GUT symmetry generate contributions to Yukawa couplings which are comparable to the ones from cubic interactions. Specifically we consider an $mathsf{SO(10)}$ model with a sector consisting of $mathsf{126+overline{126} + 210}$ of heavy Higgs which breaks the GUT symmetry down to the standard model gauge group and a sector consisting of $2times mathsf{10+120}$ of light Higgs fields. In this model we compute the corrections from the quartic interactions to the Yukawa couplings for the top and the bottom quarks and for the tau lepton. It is then shown that inclusion of these corrections to the GUT scale Yukawas allows for consistency of the top, bottom and tau masses with experiment for low $tanbeta$ with a value as low as $tanbeta$ of 5$-$10. We compute the sparticle spectrum for a set of benchmarks and find that satisfaction of the relic density is achieved via a compressed spectrum and coannihilation and three sets of coannihilations appear: chargino-neutralino, stop-neutralino and stau-neutralino. We investigate the chargino-neutralino coannihilation in detail for the possibility of observation of the light chargino at the high luminosity LHC (HL-LHC) and at the high energy LHC (HE-LHC) which is a possible future 27 TeV hadron collider. It is shown that all benchmark models but one can be discovered at HL-LHC and all would be discoverable at HE-LHC. The ones discoverable at both machines require a much shorter time scale and a lower integrated luminosity at HE-LHC.

Download