Do you want to publish a course? Click here

Multivariate Discrimination in Quantum Target Detection

61   0   0.0 ( 0 )
 Added by Peter Svihra
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a simple multivariate technique of likelihood ratios for improved discrimination of signal and background in multi-dimensional quantum target detection. The technique combines two independent variables, time difference and summed energy, of a photon pair from the spontaneous parametric down-conversion source into an optimal discriminant. The discriminant performance was studied in experimental data and in Monte-Carlo modelling with clear improvement shown compared to previous techniques. As novel detectors become available, we expect this type of multivariate analysis to become increasingly important in multi-dimensional quantum optics.



rate research

Read More

It is believed that the optimal performance of a quantum lidar or radar in the absence of an idler and only using Gaussian resources cannot exceed the performance of a semiclassical setup based on coherent states and homodyne detection. Here we disprove this conjecture by showing that an idler-free squeezed-based setup can beat this benchmark. More generally, we show that probes whose displacement and squeezing are jointly optimized can strictly outperform coherent states with the same mean number of input photons for both the problems of quantum illumination and reading.
47 - Peter B. Weichman 2020
Quantum computational approaches to some classic target identification and localization algorithms, especially for radar images, are investigated, and are found to raise a number of quantum statistics and quantum measurement issues with much broader applicability. Such algorithms are computationally intensive, involving coherent processing of large sensor data sets in order to extract a small number of low profile targets from a cluttered background. Target enhancement is accomplished through accurate statistical characterization of the environment, followed by optimal identification of statistical outliers. The key result of the work is that the environmental covariance matrix estimation and manipulation at the heart of the statistical analysis actually enables a highly efficient quantum implementation. The algorithm is inspired by recent approaches to quantum machine learning, but requires significant extensions, including previously overlooked `quantum analog--digital conversion steps (which are found to substantially increase the required number of qubits), `quantum statistical generalization of the classic phase estimation and Grover search algorithms, and careful consideration of projected measurement operations. Application regimes where quantum efficiencies could enable significant overall algorithm speedup are identified. Key possible bottlenecks, such as data loading and conversion, are identified as well.
We study quantum anomaly detection with density estimation and multivariate Gaussian distribution. Both algorithms are constructed using the standard gate-based model of quantum computing. Compared with the corresponding classical algorithms, the resource complexities of our quantum algorithm are logarithmic in the dimensionality of quantum states and the number of training quantum states. We also present a quantum procedure for efficiently estimating the determinant of any Hermitian operators $mathcal{A}inmathcal{R}^{Ntimes N}$ with time complexity $O(polylog N)$ which forms an important subroutine in our quantum anomaly detection with multivariate Gaussian distribution. Finally, our results also include the modified quantum kernel principal component analysis (PCA) and the quantum one-class support vector machine (SVM) for detecting classical data.
171 - Mark M. Wilde 2020
This paper introduces coherent quantum channel discrimination as a coherent version of conventional quantum channel discrimination. Coherent channel discrimination is phrased here as a quantum interactive proof system between a verifier and a prover, wherein the goal of the prover is to distinguish two channels called in superposition in order to distill a Bell state at the end. The key measure considered here is the success probability of distilling a Bell state, and I prove that this success probability does not increase under the action of a quantum superchannel, thus establishing this measure as a fundamental measure of channel distinguishability. Also, I establish some bounds on this success probability in terms of the success probability of conventional channel discrimination. Finally, I provide an explicit semi-definite program that can compute the success probability.
In this work we investigate quantum-enhanced target detection in the presence of large background noise using multidimensional quantum correlations between photon pairs generated through spontaneous parametric down-conversion. Until now similar experiments have only utilized one of the photon pairs many degrees of freedom such as temporal correlations and photon number correlations. Here, we utilized both temporal and spectral correlations of the photon pairs and achieved over an order of magnitude reduction to the background noise and in turn significant reduction to data acquisition time when compared to utilizing only temporal modes. We believe this work represents an important step in realizing a practical, real-time quantum-enhanced target detection system. The demonstrated technique will also be of importance in many other quantum sensing applications and quantum communications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا