No Arabic abstract
We propose the novel task of answering regular expression queries (containing disjunction ($vee$) and Kleene plus ($+$) operators) over incomplete KBs. The answer set of these queries potentially has a large number of entities, hence previous works for single-hop queries in KBC that model a query as a point in high-dimensional space are not as effective. In response, we develop RotatE-Box -- a novel combination of RotatE and box embeddings. It can model more relational inference patterns compared to existing embedding based models. Furthermore, we define baseline approaches for embedding based KBC models to handle regex operators. We demonstrate performance of RotatE-Box on two new regex-query datasets introduced in this paper, including one where the queries are harvested based on actual user query logs. We find that our final RotatE-Box model significantly outperforms models based on just RotatE and just box embeddings.
Multiple web-scale Knowledge Bases, e.g., Freebase, YAGO, NELL, have been constructed using semi-supervised or unsupervised information extraction techniques and many of them, despite their large sizes, are continuously growing. Much research effort has been put into mining inference rules from knowledge bases. To address the task of rule mining over evolving web-scale knowledge bases, we propose a parallel incremental rule mining framework. Our approach is able to efficiently mine rules based on the relational model and apply updates to large knowledge bases; we propose an alternative metric that reduces computation complexity without compromising quality; we apply multiple optimization techniques that reduce runtime by more than 2 orders of magnitude. Experiments show that our approach efficiently scales to web-scale knowledge bases and saves over 90% time compared to the state-of-the-art batch rule mining system. We also apply our optimization techniques to the batch rule mining algorithm, reducing runtime by more than half compared to the state-of-the-art. To the best of our knowledge, our incremental rule mining system is the first that handles updates to web-scale knowledge bases.
Relation linking is essential to enable question answering over knowledge bases. Although there are various efforts to improve relation linking performance, the current state-of-the-art methods do not achieve optimal results, therefore, negatively impacting the overall end-to-end question answering performance. In this work, we propose a novel approach for relation linking framing it as a generative problem facilitating the use of pre-trained sequence-to-sequence models. We extend such sequence-to-sequence models with the idea of infusing structured data from the target knowledge base, primarily to enable these models to handle the nuances of the knowledge base. Moreover, we train the model with the aim to generate a structured output consisting of a list of argument-relation pairs, enabling a knowledge validation step. We compared our method against the existing relation linking systems on four different datasets derived from DBpedia and Wikidata. Our method reports large improvements over the state-of-the-art while using a much simpler model that can be easily adapted to different knowledge bases.
Knowledgebase question answering systems are heavily dependent on relation extraction and linking modules. However, the task of extracting and linking relations from text to knowledgebases faces two primary challenges; the ambiguity of natural language and lack of training data. To overcome these challenges, we present SLING, a relation linking framework which leverages semantic parsing using Abstract Meaning Representation (AMR) and distant supervision. SLING integrates multiple relation linking approaches that capture complementary signals such as linguistic cues, rich semantic representation, and information from the knowledgebase. The experiments on relation linking using three KBQA datasets; QALD-7, QALD-9, and LC-QuAD 1.0 demonstrate that the proposed approach achieves state-of-the-art performance on all benchmarks.
Semantic parsing transforms a natural language question into a formal query over a knowledge base. Many existing methods rely on syntactic parsing like dependencies. However, the accuracy of producing such expressive formalisms is not satisfying on long complex questions. In this paper, we propose a novel skeleton grammar to represent the high-level structure of a complex question. This dedicated coarse-grained formalism with a BERT-based parsing algorithm helps to improve the accuracy of the downstream fine-grained semantic parsing. Besides, to align the structure of a question with the structure of a knowledge base, our multi-strategy method combines sentence-level and word-level semantics. Our approach shows promising performance on several datasets.
Extracting entities and relations for types of interest from text is important for understanding massive text corpora. Traditionally, systems of entity relation extraction have relied on human-annotated corpora for training and adopted an incremental pipeline. Such systems require additional human expertise to be ported to a new domain, and are vulnerable to errors cascading down the pipeline. In this paper, we investigate joint extraction of typed entities and relations with labeled data heuristically obtained from knowledge bases (i.e., distant supervision). As our algorithm for type labeling via distant supervision is context-agnostic, noisy training data poses unique challenges for the task. We propose a novel domain-independent framework, called CoType, that runs a data-driven text segmentation algorithm to extract entity mentions, and jointly embeds entity mentions, relation mentions, text features and type labels into two low-dimensional spaces (for entity and relation mentions respectively), where, in each space, objects whose types are close will also have similar representations. CoType, then using these learned embeddings, estimates the types of test (unlinkable) mentions. We formulate a joint optimization problem to learn embeddings from text corpora and knowledge bases, adopting a novel partial-label loss function for noisy labeled data and introducing an object translation function to capture the cross-constraints of entities and relations on each other. Experiments on three public datasets demonstrate the effectiveness of CoType across different domains (e.g., news, biomedical), with an average of 25% improvement in F1 score compared to the next best method.