Do you want to publish a course? Click here

Scaled Vecchia approximation for fast computer-model emulation

81   0   0.0 ( 0 )
 Added by Matthias Katzfuss
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many scientific phenomena are studied using computer experiments consisting of multiple runs of a computer model while varying the input settings. Gaussian processes (GPs) are a popular tool for the analysis of computer experiments, enabling interpolation between input settings, but direct GP inference is computationally infeasible for large datasets. We adapt and extend a powerful class of GP methods from spatial statistics to enable the scalable analysis and emulation of large computer experiments. Specifically, we apply Vecchias ordered conditional approximation in a transformed input space, with each input scaled according to how strongly it relates to the computer-model response. The scaling is learned from the data, by estimating parameters in the GP covariance function using Fisher scoring. Our methods are highly scalable, enabling estimation, joint prediction and simulation in near-linear time in the number of model runs. In several numerical examples, our approach substantially outperformed existing methods.



rate research

Read More

Gaussian processes (GPs) are highly flexible function estimators used for geospatial analysis, nonparametric regression, and machine learning, but they are computationally infeasible for large datasets. Vecchia approximations of GPs have been used to enable fast evaluation of the likelihood for parameter inference. Here, we study Vecchia approximations of spatial predictions at observed and unobserved locations, including obtaining joint predictive distributions at large sets of locations. We consider a general Vecchia framework for GP predictions, which contains some novel and some existing special cases. We study the accuracy and computational properties of these approaches theoretically and numerically, proving that our new methods exhibit linear computational complexity in the total number of spatial locations. We show that certain choices within the framework can have a strong effect on uncertainty quantification and computational cost, which leads to specific recommendations on which methods are most suitable for various settings. We also apply our methods to a satellite dataset of chlorophyll fluorescence, showing that the new methods are faster or more accurate than existing methods, and reduce unrealistic artifacts in prediction maps.
Generalized Gaussian processes (GGPs) are highly flexible models that combine latent GPs with potentially non-Gaussian likelihoods from the exponential family. GGPs can be used in a variety of settings, including GP classification, nonparametric count regression, modeling non-Gaussian spatial data, and analyzing point patterns. However, inference for GGPs can be analytically intractable, and large datasets pose computational challenges due to the inversion of the GP covariance matrix. We propose a Vecchia-Laplace approximation for GGPs, which combines a Laplace approximation to the non-Gaussian likelihood with a computationally efficient Vecchia approximation to the GP, resulting in a simple, general, scalable, and accurate methodology. We provide numerical studies and comparisons on simulated and real spatial data. Our methods are implemented in a freely available R package.
154 - Yi Ji , Simon Mak , Derek Soeder 2021
We present a novel Graphical Multi-fidelity Gaussian Process (GMGP) model that uses a directed acyclic graph to model dependencies between multi-fidelity simulation codes. The proposed model is an extension of the Kennedy-OHagan model for problems where different codes cannot be ranked in a sequence from lowest to highest fidelity.
147 - Matthias Katzfuss 2015
Automated sensing instruments on satellites and aircraft have enabled the collection of massive amounts of high-resolution observations of spatial fields over large spatial regions. If these datasets can be efficiently exploited, they can provide new insights on a wide variety of issues. However, traditional spatial-statistical techniques such as kriging are not computationally feasible for big datasets. We propose a multi-resolution approximation (M-RA) of Gaussian processes observed at irregular locations in space. The M-RA process is specified as a linear combination of basis functions at multiple levels of spatial resolution, which can capture spatial structure from very fine to very large scales. The basis functions are automatically chosen to approximate a given covariance function, which can be nonstationary. All computations involving the M-RA, including parameter inference and prediction, are highly scalable for massive datasets. Crucially, the inference algorithms can also be parallelized to take full advantage of large distributed-memory computing environments. In comparisons using simulated data and a large satellite dataset, the M-RA outperforms a related state-of-the-art method.
Large renewable energy projects, such as large offshore wind farms, are critical to achieving low-emission targets set by governments. Stochastic computer models allow us to explore future scenarios to aid decision making whilst considering the most relevant uncertainties. Complex stochastic computer models can be prohibitively slow and thus an emulator may be constructed and deployed to allow for efficient computation. We present a novel heteroscedastic Gaussian Process emulator which exploits cheap approximations to a stochastic offshore wind farm simulator. We conduct a probabilistic sensitivity analysis to understand the influence of key parameters in the wind farm simulator which will help us to plan a probability elicitation in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا